
Spring Quarter 2008 1

B e g i n n i ng s o f O pe r a t i n g S y s t e m sBe g i n n i ng s o f O pe r a t i n g S y s t e m s

Goal

To look at the history of operating systems and see why they
developed as they did; to se the basic functions and designs of operating
systems.

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 2

history of operating systems

First Generation

Initially, hardware only; programmer wrote, ran program & operated
machine - so could halt it, modify it, etc.

• programming done in binary, or rewiring plug boards
• introduction of punched cards made life easier

Problem: "open shop" approach - if you sign up for 1 hour, you get it
even if you don't need it.

Example: assume signup time is for 15m blocks, and
input time 0.3m
output time 0.5m
execution time 1.0m

£ processor utilization = execution time
 total time = 1

15 ≈ 7%

£ throughput = number of jobs run
total time = 1 job

15 min = 4 jobs
hr

Second Generation

This was heralded by transistors making computers more reliable,
and by the separation of staff functions:

• operators ran jobs
• programmers wrote jobs on punch cards using assemblers,

FORTRAN compilers
How did this affect throughput and processor utilization?
Example: as before, assume signup time is for 15m blocks, and

input time 0.3m
output time 0.5m
execution time 1.0m

so each job is in the system for 1.8m. Then

£ processor utilization = execution time
 total time = 1m

1.8m ≈ 55%

£ throughput = number of jobs run
total time = 1 job

1.8 min = 33 jobs
hr

Batching began: copy jobs from card to tape, main computer runs

tape, output collected on tape which is then taken to another satellite
computer and printed

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 3

Continued example: Now assume the same I/O and execution
characteristics as before:

input time 0.3m
output time 0.5m
execution time 1.0m

and let jobs be batched in sets of 50. For each batch we have:
delivery time of 50 jobs 30m
translate cards to magtape 15m
mount tape 5m
execution (1m per job) 50m
print the output tape 25m
manual separation of printer output 15m

so each job is in the system for 1.8m. Then

£ processor utilization = batch execution time
 mounting + batch execution time =
50m

5m+50m ≈ 91%

£ throughput = number of jobs run
mounting + batch execution time =
50 jobs

5m + 50m = 55 jobs
hr

As computers are so fast at doing many things people do, why not
have them schedule themselves? First serious, informal discussion of
writing a supervisory program to address idle time and work required to
control I/O devices held in 1953 in Herb Grosch's hotel room during the
Eastern Joint Computer Conference.

First operating system: the Input/Output System for the IBM 701,
written at General Motors: a small program which provided a common set
of routines for accessing I/O devices; if programs branched back to it at
the end, it would accept and load next job. Made offline operation easier,
since to change I/O routines (if for example a new and different printer
were used), the ones in the I/O system routines had to change and not
the I/O routines in every single program

Next advance: buffering: I/O, CPU would overlap. To do this, I/O
must work independently of CPU; idea is to keep both the CPU and I/O
devices busy simultaneously. First done in SHARE operating system,
written by the IBM user's group for the IBM 709. Improved speed and
automated much of operator's job, but operators still had to load, unload
cards and tapes; also, little error recovery.

Rise of disk operating systems, which stored data on disks, not
tape.

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 4

• resident loader: loads system and user programs into memory,
prepares them for execution, passes control to them. Proper
programs return control to another operating system routine
which repeats process

• users inform operating system of job needs (such as memory,
printers to be used, etc.) using a job control language

• device support for many different devices led to true I/O device
independence

First computer system designed to support an operating system
was the Atlas system designed by Manchester University and Ferranti Ltd.
Several hardware innovations:

• Extracodes are special machine instructions causing traps to
invoke special software routines; forerunner of system call or
trap

• one-level store using large disk or drum as backup memory for
main store: first notion of virtual memory

• interrupts - used to determine when external event occurs
Example: an alarm clock generates an interrupt at a certain time,
and the following software routine is invoked:
alarm clock interrupt: disable alarm clock interrupt

 save program status
 invoke routine requested
 reset alarm clock interrupt
 reset program status
 resume normal processing

Example: a device generates an interrupt when a certain event
(such as input arriving) occurs, and the following software
routine is invoked:
device interrupt: disable device interrupt

 save program status
 invoke appropriate routine
 reset device interrupt
 reset program status
 resume normal processing

Third Generation: Integrated Circuits

The coming of multiprogramming (where many jobs run interleaved
on one machine)

• spooling: just as I/O can be buffered, so can jobs. Instead of
tape, though, put jobs on disks (backing store) since going
between input from disk, moving data and instructions between
the disk and CPU, and doing output to disk is easy, whereas
doing the same on tape is very cumbersome

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 5

• note monitor can schedule jobs as disks can be accessed in
random order; as tapes had to be accessed in sequential order,
previously job execution was always FIFO

• computation of one job, I/O of another, can overlap
These were first implemented in EXEC II, an operating system for

the UNIVAC 1107; it ran jobs faster than the users could load the cards!
Measuring performance in time between submission and resubmission of a
job, 33% of all jobs "circulated" in under 5m, with the processor
utilization being 90%.

As another example, the Burroughs 5000 Master Control Program
interleaved jobs; while one waited for I/O, others ran. It also assigned
priorities which influenced choice of program to run.

• other notable characteristic: all user programs were written in
ALGOL or COBOL and translated by compilers; there were no
assemblers available to users!

Ideas of customer service and compatibility introduced by IBM with
its System/360 family

• extensive customer service and support
• very powerful operating system, the OS/360 (see Brooks' book

The Mythical Man-Month)
• upward compatibility for all systems in family
• powerful job control language
Several problems introduced in this generation relating to job

scheduling, memory management, and protection.
• Protection required to prevent one job from wiping out others;

for example, one job reads its input and the next job (as the jobs
are all in the input stream), or one job issues an illegal
instruction and crashes the machine, thereby preventing other
jobs from running.
hardware solutions:
• forillegal instructions, cause a trap (interrupt) to prevent

system crash
• to detect bad memory references that try to access the

operating system, define a special fence register to separate
monitor and each job. Compare the address of each memory
reference to the address in the fence register, and abort if
the reference crosses the fence. To detect those that try to
access memory of another job, use two registers containing
the high and low addresses of the current job..

software solutions:
• infinite use of the CPU: use a timer to interrupt jobs which

hog CPU too long

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 6

• to prevent jobs from interfering with I/O of another job (for
example by using the device simultaneously), define at least
2 modes of execution
• kernel (system, supervisor, monitor) mode
• user mode
Mark some instructions as "privileged;" these can only be
done in kernel mode. If they are tried in user mode, the job
will abort (illegal instruction)As user jobs need to do
privileged things like I/O instructions, they need a mechanism
to request monitor to do it. The mechanism used is the
system call (originated on ATLAS, and there called
extracode); these are, for various computers:

 computer system call opcode
 IBM 370 SVC
 DECSystem-10 UUO
 DECSystem-20 JSYS
 PDP-11 TRAP
 VAX-11 CHMK, CHMS, CHME

These traps cause control to go to the operating system
(monitor), which checks the legality of the request and acts
accordingly. Note that the monitor can do things not related
to the currently-executing job as well (such as spooling)

Time Sharing (the interactive use of a computer by many users
simultaneously) was proposed by Strachy in 1959, and in 1962, a paper
by Licklider and Clark emphasized its creative advantages.

• The CTSS (Cambridge Time Sharing System) from MIT and the Q-
32 from SDC were the earliest operational time sharing systems;
they reduced time between submission of job and obtaining of
results. Both also guaranteed response to short requests and
let many users share computer.

• Batch merged with time sharing on systems such as DEC's
TOPS-20 (for DECSystem-20s) and VMS (for VAXen). Some
batch had time-share added (IBM OS/360 with TSO)

• An early time-sharing system, MULTICS, developed at MIT,
combined time sharing with many features of ATLAS such as
virtual memory, protection, device independence, etc.

Virtual Machines

Archetype is the THE system, and its design is one of process
hierarchy. As you go up the hierarchy, each layer defines a more
developed system (this technique is called "layers of abstraction") and
processes at that level ignore issues of availability of resources managed
at lower level; for instance, if memory allocation done at level i, then

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 7

processes at level j (j>i) ignore all issues associated with memory
management and just invoke the process at level i when they need
memory managed. It's worth looking at in detail:

Level 0: hardware
• real time clock interrupt to prevent CPU hogging
• actual number of processors
• processor management

Level 1: segment controller process
• hides details of storage management
• higher levels see only "segments" (pages), the actual

locations of the segments being hidden
Level 2: operator console (message interpreter)

• handles traffic from, to operator at system console
• higher levels see their own console
 why a separate process? because first part of (input)

message from system operator must be processed to figure
out which process the message is to be sent to

Level 3: I/O handlers
• buffer input, unbuffer output
• higher levels see "logical device units" and not registers
 why is this above message interpreter? if a device

malfunctions, the system must be able to inform operators
Level 4: user processes

• each has complete virtual machine with separate I/O devices,
operator console, segmented storage and CPU

• other than communication via primitives (semaphores),
processes completely isolated

Each layer forms "abstract", or VIRTUAL, machine
The operating system TENEX designed by BBN for the DECSystem-

10 was similar (and DEC picked up so much, that TOPS-20 was nicknamed
"TWENEX").

First true virtual machine was CP/CMS, later to become VM/370 it
gave users (apparent) access to all machine features including an illusion
of private address space, CPU, and I/O devices (such as "mini-disks")

How do they work? There are three modes: “virtual user,” “virtual
monitor,” and “real monitor” modes. All traps, interrupts turn control
over to real monitor, which either services the request, then modifies the
virtual monitor to make it appear the virtual monitor had serviced the
request, and then restarts the virtual monitor (this is how privileged
requests like I/O are done), or it returns control at once to the virtual
monitor, which executes the appropriate function.

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 8

Speed depends on how much you have to do in software; for
example, the IBM VM/370 only simulates priviledged instructions, so its
speed is acceptable

Advantages:
• protection: you have complete user isolation
• good for operating system development, because if you

crash your version, others can continue working and you
need not restart the machine.

Disadvantages:
 • sharing hardware painful; how do you share 3 disks among 7

users? (One way: VM/360 gives each user a smaller, "virtual"
disk)

Minicomputers
 Here, “mini” refers to price in the early days. Gradually, price and
size became (somewhat) related, so the lower the price the smaller the
size.

1950s • Burroughs E-101, Bendix G-15, etc.
 Price: under $50,000
 Characteristics: large; vacuum tubes; slow
1960s • CDC-160, IBM-1620 both had limited instruction size

(12 bits), so relative and indirect addressing modes
introduced

 • PDP-1, PDP-8
 Price: under $18,000
 Characteristics: PDP-8 introduced real-time clock, DMA,

etc. so it began real-time control for minicomputers;
however, it suffered from limited system software and
used punched paper tape

 • DDP-116, DATA-620, IBM-1130, IBM-1800
 Characteristics: 16-bit architectures, vectored

interrupts, multiple accumulators, etc; DDP-116 had
“Input/Output Selector,” which was the beginning of
operating systems for minicomputers; also, IBM
introduced a disk operating system for the 1800 These
accepted commands from a terminal, loaded and ran
programs, and monitored real-time devices

1970: • PDP-II
 Characteristics: planned as family of compatible

computers. Three operating systems available: single-
user (RT-11, had notion of foreground and background
jobs); timesharing system (RSTS), real-time executive

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 9

(RSX-11, supported memory management,
multiprogramming, etc.)

 • UNIX: Thompson and Ritchie unhappy with operating
system at Bell Labs, combined ideas from DTSS, CTSS,
MULTICS, to get UNIX, but made it cleaner and simpler
(in part because of the space constraints!). Originally
done in assembly, but rewritten in C later for
maintainability and portability; no longer tied to any
particular machine.

Microcomputers, Personal Computers, Workstations
 As chips became smaller and cheaper, microcomputers became
more common:

1970s • Intel 4004: 4 bit CPU on a few chips; followed by …
 Intel 8008: 8 bit CPU; then the 8080, an improved

8008.
Many hobbyists built micros; some companies made it, others

didn't. Apple did, using 6502 chips to get Apple II. System software was
slow to develop as micros seen as toys; Digital Research created CP/M
(Control Program for Microprocessors).

Workstations started at Xerox; The Palo Alto Research Center
(Xerox PARC) was chartered to carry on pure research at frontiers of
technology.

Alto the first computer to use a mouse; also one of the earliest
workstations

Star intended to be the heart of "office of the future" which Xerox
was developing, this workstation was not particularly
successful but it inspired others

One of them was the workstation Sun Microsystems started
marketing, which quickly became widely accepted in the technical
community.

The Star also inspired many of the personal computers being
developed, most notably the Apple Lisa computer (which was not very
successful) and the Lisa's successor, the Macintosh (which was
introduced in 1984 and is quite successful).

These led to the view of "open operating systems," a design
philosophy which views the operating system as a collection of
subprograms rather than something which gets in the way of applications.

Networks and Distributed Systems

As local and wide area networks became available, they were used in
two ways:

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 10

network operating systems: treat the net as a unified set of
resources accessible by any computer on the net

distributed operating systems: similar to network operating
systems, but applications cannot tell which host they
run on

1969 ARPAnet made functional: nodes at SDC, UCSB, UCLA,
and SRI International

1972 ARPAnet publicly demonstrated at First International
Conference on COmputers and Communication; proves
feasibility of long-distance networking technology.

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 11

Operating Systems Functions

The goal is to look at common operating system functions, see

what a good operating system needs to do, desireable features.

I/O Functions

Two ways to read in data:
polling: CPU starts I/O, busy-waits until done; no overlap of

CPU computation, I/O
interrupts: CPU loads registers and goes on; setting the registers

starts device controller and I/O; on completion, device
driver generates an interrupt, CPU jumps to routine,
handles completion

Example: PDP-II, using console driver to output a character
polling: data is stored in memory location 0777568, and bit 7

in status register at location 0777564 is set; this
causes data to prints data at console

interrupts: interrupt vector at location 064. To output, program
starts the output procedure, and while the character is
being transmitted, the program continues with (other)
processing. When output complete, program
interrupted: it saves state, so it can continue where it
left off, and control is transferred to address in
interrupt vector; that does any cleanupm, and returns,
restoring the saved state and thereby allowing the
program to continue.
Problem: This is 1 interrupt per input or output
char/word, which is acceptable for slow devices, but
for disks, tape.., or other high-speed devices, is not.
Solution? DMA

Direct Memory Access (bettter known as DMA), also called a
"channel" on many mainframes. Data not copied to registers; instead, an
address and length is put in a register, the I/O operation started by
commanding a small, special-purpose computer called a controller to
begin it, and then while the program returns to whatever it was doing, the
controller transfers large amounts of data between the device and
memory (not registers, hence the name). When done, the controller
raises an interrupt.

Example:: PDP-II, TC-II device (DEC tape reader):
memory location what is there

077350 memory location for data
077346 address of TC-11

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 12

077344 number of bytes of data
077342 command (read, write, …)
077340 status register
000214 associated interrupt vector

May have to wait for I/O completion in interrupt - driven scheme, for
example if the program needs the data to continue; systems generally
have a wait system call to block the program until an interrupt occurs, or
they allow the I/O operation to be called in a blocking fashion (meaning
that when the operation ends, the data is in memory)

£ operating systems must provide for:
• I/O handling: the interrupts, etc. should all be invisible to the

program
• error handling: given the above, just want the user to get an

error code of some kind
• interrupt handling: don't want the user to have to know

where the interrupt vectors are, or even (necessarily) they
exist; at most, be able to specify routine to execute on
interrupt

• resource control: one user at a time should be able to access
an I/O device

• protection: don't want one user to be able to read another
user's terminal screen just after the second typed a password

• I/O scheduling: to determine in what order processes get
access to the I/O devices

Process Functions

Process is program in execution. Typical actions:
create to start a new process
delete to terminate an existing one
schedule to specify when one process should begin
synchronize to have two processes co-operate with one another
communicate to have a process send or receive information to

or from another
£ operating systems must provide for:

• job sequencing and control: for scheduling, creation, deletion
• resource control: to control who gets access to what

resource
• JCL interpretation: to translate the user's desires, resources

into something that can be used by the computer
• protection: for example, don't want one user to kill another

user's jobs
• communication: for synchronization, transmission and

reception of information

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 13

• accounting: to know who to charge for computer time
(common in mainframe shops, supercomputing centers, etc.)

Memory Functions

Need to share memory among the operating system and many
processes. How? Essentially, the operating system transforms the
addresses generated by the process into physical addresses, thereby
managing where the process data goes. So the operating system must
allocate (and deallocate) memory as well as track who is using what
portion of memory. Typically, memory looks like:

interrupt

vectors

operating

system

user

processes

interrupt

vectors

operating

system

user

processes

or

£ operating systems must provide for:

• resource control: to control who gets access to what part of
memory (the resource)

• protection: for example, don't want one process to access
memory being used by another process

• error handling: given the above, just want the user to get an
error code of some kind

• accounting: to know who to charge for memory use (common
in mainframe shops, supercomputing centers, etc.)

Secondary Storage Functions
 Typically, too much data and instructions to keep in memory, so
some saved on secondary storage and brought in when needed. So, the
operating system must determine when to move data and instructions to
and from secondary storage; manage the space on those devices; and
map file names to addresses on the storage medium.

⇒ operating systems must provide for:
• disk scheduling: determine how best to allocate locations on disk to

files, and how to arrange for data to be transferred there most
efficiently

• I/O scheduling: to determine in what order processes get access to the
I/O devices

• long-term storage management: how to arrange files so that there is
as little wasted space as possible (storage devices usually require data
to be written in blocks of fixed size, say 1024 bytes)

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 14

• accounting: to know who to charge for memory use (common in
mainframe shops, supercomputing centers, etc.)

User Interface Functions
 To provide command interpreter and language to enable users to
submit jobs and have them run.

⇒ operating systems must provide for:
• acceptable user interface: enable users to enter commands using the

job control language easily

Desireable Features
• efficiency so system works as quickly as possible. But what metric do

you use? It depends on what your system is used for. Some more
common ones are:
• mean time between jobs
• turnaround time (batch system)
• response time (interactive systems)
• resource utilization (for example, processor utilization)
• idle CPU time
• throughput

• reliability so system error-free, robust (able to handle error conditions
without crashing)

• maintainable so system can be modified or fixed easily; requires
• modularity (layering)
• written in a high-level language as much as possible

• small which usually, but not always, implies simplicity. Benefits:
• easier to maintain, debug, check
• more room for user applications

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 15

Organization of operating systems

monolithic

Operating system is set of programs executing on hardware;
modules do different things but basically form a single “process”. user
programs seen as "subroutines", invoked when operating system not
performing system functions.

user

process

user

process

hardware

operating system

call

branch

return

user

process

user

process

interrupt

User program runs until:
• terminates (like procedure return)
• times out (i.e., too much CPU time)
• issues service request (i.e., I/0 operation); then the operating system

executes the request
• interrupt occurs; operating system must attend to something

kernel

Operating system performs only most vital lower level functions;
like monolithic, here but far fewer functions.

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 16

user

process

user

process

hardware

operating system (kernel)

user

process

system

process

interrupt

kernel

call
return

communication

Example: one of the earliest is Brinch Hansen's RC 4000. Four process
control primitives (create, start, stop, remove); note there is a natural
hierarchy of processes ordered by process creation. Processes can also
communicate.

process hierarchy

 Virtualize lower level resources
Example: THE operating system

object oriented

 View system as collection of objects (processes, procedures,
pages, devices, messages,etc.,) and capabilities (pointers to objects, also
containing rights). Kernel maintains type definitions of objects and
enforces access restrictions. To access another object, issues kernel call
naming capability of target and operation.
Example of use: scheduler takes processes from scheduling port, put
them into dispatching port using “send”, “receive” primitives

scheduling port scheduler dispatching port
Example: Intel's iAPX-432

client-server model

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 17

 Kernel just passes messages; for example, to read, client process
sends message to file server, and file server sends back data. But I/O is
privileged, so ...
1. file serve runs in kernel mode with complete access to hardware, but

passes messages in usual way
2. kernel gets message from file server, sees it is for a specific, special

address. Messages sent to that address just get copied, e.g., to I/0
device registers to begin a read. Kernel does not inspect contents

Use? Excellent for distributed systems... client need not know whether its
local host, or a remote host, handles a request.

User Interface

Before looking at OS implementation, consider what the user sees.
The user interfaces control how the user interacts with the system. In
general, the user sees three types of software:
• kernel needs hardware privileges (i.e., ability to execute in privileged

mode); example: login
• essential utilities need no privilege but users need them and they

determine user's view of OS; example: shells, command interpreters
• optional utilities are useful things users may wish to use on occasion;

example: text formatters.

Command Interpreter

Translates user commands into sequences of actions. There are
two types of languages used:
• Job Control Language (JCL) used for batch; must be complex,

powerful so users can describe what is to be done for system actions
• Command Language used interactively; may be less complete than JCL

as user can intervene when appropriate
Both are built up of commands; what these commands do is influenced by
the programs and the environment.

program is a set of instructions packaged so a process can be
started to execute those instructions

environment (of a process) is what distinguishes it from other
invocations of the same program

Example: to compile a PASCAL program, may need to specify:
• which compiler to use
• where the source is
• where to store the resulting image
• whether to warn about non-standard usage
• whether to a generate listing
• whether to run resulting program

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 18

The first describes the program to be run; the rest describe the
environment.

Invoking programs

Typically, you just name the file containing the program to be run.
The command interpreter then searches a series of directories for that file
(in UNIX™ terminology, this is your search path). If found, it is executed; if
not found, give an error condition. If the file can't be executed, either
continue to read commands or give error.

• should allow sensible abbreviations (command completion)
• should be as mnemonic as possible

The execution environment is composed of two parts:
global which persists until changed
 Example: set CPUlimit 15m

sets the CPU limit for all processes
local which applies to one process only
 Example: (set CPUlimit 15m ; who)
 sets the CPU limit for the one process who

If l process starts another, the subprocess might inherit its parent's
environment, or the parent might specify a different (local) environment.
This can be done using:

• options to programs (called parameters)
 Example: cp -i x y
 -i is part of local environment.

The command interface can present parameterss as strings, to be
interpreted by the program, in one of three ways:

• the command interface can send them as messages in a
message-passing system

• the program can request parameters via system calls (cf. the
TOPS-20 system call CMND)

• the command interface can arrange for new program to start
with parameters stored in its virtual space (UNIX™)

One principle of all command languages is that options performed
frequently should be easy to invoke (the user principle), giving rise to:

• default settings
• built-in shorthand
• init file (cshre)
• automatic chaining (invoking sequences of programs with a

single command) [macros]
• personalized shorthand (aliases)

A command script crosses automatic chaining with personalized
shorthand (control structure), and uses a little language. Carrying this to

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 19

extremes, the same language could be used both to program and to issue
commands. Several problems:

• interactive, noninteractive are different enough so some
constructs are not likely to be used for both

• non-interactive are read more often than written, so large
percentage of the characters present to make the program
readable would be unnecessary when used interactively.

Example: ITS: command interpreter and program debugger the same
• debugger can invoke, interrupt, examine, modify programs
• so can command interpreter

Some other features that are good for user interfaces, in no particular
order:

interrupts to cancel a command (^\ or ^C in UNIX), to get system
load (^ T in TOPS-20); these are often outside control
of the command interpreter; basically, the terminal
driver notices the cancel character and stops the
process, and the command interpreter realizes the
process has stopped.

suspend stops executing process, but allows later resumption; a
process tree scheme may stop/suspend all processes
in the tree, or just one.

background vs. foreground: allows multiple processes to run
simultaneously from a single command interpreter
(parallelism)

pattern matching: match multiple file names at once
• done in the file server
• done in the command interpreter (UNIX)
• done in utilities (TOPS - 20, by giving the CMND

system call)
history remember last few commands
command completion: finish partially-typed commands (TOPS - 20,

TENEX, TCSH under UNIX)
• no completion: ring bell
• ambiguous: list possibilities

subordinate command interpreter: called “shell escapes”

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 20

command interpreter

mailer

command interpreter

editor
Main problem is you must go back in same order

redirection: “bind” output destination, input source to program. To
bind for program “simulate”:
• bind in environment; set up the redirection before

executing the program, as in:
set associate simulate.in input.one

 set associate simulate.out output.one
• bind as parameters; for example,

simulate input.one output.one
• have the command interpreter do the binding (UNIX);

here, < binds to input and > to output:
simulate <input.one >output.one

• bind output of 1 program to input of another (UNIX);
here, | binds output of first to input of second:

simulate <input.one | sort >output.one.
For displays bitmapped displays and graphical user interfaces allow

commands to be given not just as words but using a variety of input
devices (mice, tracking balls, menus) and output to be given in a variety
of ways (icons, windows, graphics, etc.)

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 21

the kernel

Question
 How do processes interact with the hardware of the computer?
What does the program that mediates this interaction (kernel) look like?

The System Kernel

Consider now the basic, fundamental structure of operating
systems.

Overview

The kernel or nucleus is the interface between machine hardware
and the operating system, and is to provide an environment in which
processes can exist.

£ 4 classes of processes:
• primitives for process creation, destricution, IPC
• primitives for allocating, deallocating units of resources such as

main memory or secondary storage
• I/O primitives (read, write, control transfer of data to/from main

memory from/to secondary storage)
• operations to handle interrupts.
All functions require some basic hardware:
• interrupt mechanism; it must save PC for interrupted process,

go to fixed location
• memory protection
• privileged instruction set, and hence at least user, supervisor

mode (may be more, eg. the VAX's executive and kernel modes)
• real-time clock, which interrupts at fixed intervals according to

time as measured in the outside world

ker.

other

layers

user

There are three basic parts to the kernel:
• the first level interrupt handler performs initial handling of all

interrupts

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 22

• the dispatcher switches the central processor between
processes

• procedures to implement P and V (or some IPC primitives), which
enable processes to communicate

All this used to be done in assembler; now the I/O and interrupt
initialization routines are usually done in assembler, but the rest in some
higher-level language like BLISS, C, Concurrent Pascal, Modula, or Ada™.
This improves maintainability, intelligibility, and reduces the probability of
error.

The Process

All pieces involve process management, so let's look at what a
process looks like. We assume a highest-level process creates another
process, for each user as he/she logs in (the UNIX init process, for
example). This process initiates, monitors, and controls user's process

First-Level Interrupt Handler

This responds to 2 types of signals:
• interrupts from outside (devices)
• traps from inside (errors, invalid opcodes, etc.)
The FLIH must:
1. determine source of interrupt
2. initiate service of interrupt
In many cases, the hardware transfers control to different locations,

making figuring out the source easy; but this requires extra interrupt
locations.
examples: the PDP and VAX both have locations in memory used for
interrupt vectors, with every location assigned to a specific device.

In the most primitive hardware, all interrupts transfer control to
same location, and the system must test all possible sources. In other
cases, as a compromise, provide a small number of interrupt locations
shared by a group of interrupt causes; then test which of the members of
the group caused it

Interrupts and traps have many causes:
• I/O completion - device handler needs servicing, due to

completion of I/O requests, errors, etc.
• Alert - unexpected interrupt from conditions outside the system,

ie, operator pressing an interrupt key
• Timer - a time interval expired, or a real-time clock ticked; must

update software clocks accordingly
• System Requests - deliberating genrated trap (IOT, TRAP) plus a

code indicating what service program wants

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 23

• Program Fault Interrupt - program messes up, ie, attempt to
divide by 0, bad memory reference, etc.

• Machine Fault - hardware error, ex. memory fetch error, bad
board, etc. The system may either try to isolate faulty
component and bypass it, or just terminate.

save proc.

info.

interrupt

request for service

reload

proc. info.

executing

save proc.

info.

interrupt

request for service

reload

proc. info.

idle

idle

executing

executing

idle

user process A user process Boperating system

Suppose two interrupts occur at the same time. Which (if either)

do you do?
Interrupts/traps have a priority associated with them. So you

service the one with the higher priority first, then the one with lower
priority.
example: on a PDP-11, 8 priority levels of interrupt; the clock has
highest priority, then I/O devices,

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 24

May need to prevent certain types of interrupts from occuring; for
example, can't have anything interrupt the updating of a software clock.
So you mask interrupts.

• Interrupt mask register: this contains bits corresponding to
specific interrupts or classes of interrupts; set bit means block
interrupt.

• Set a priority value in a special register; only interrupts at a
higher priority are accepted.

In either case, when interrupts re-enabled, pending interrupts are
serviced.

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 25

processes in the kernel

Data Structures
 Processes, resources represented by structures called control blocks
or descriptors

• PCB (process control block) represents process to OS; it is made
at process creation time, and represents process during its
existence. For example:

PCB = (id, CPU-state (registers, etc.), processor #, parts of main memory
used, status, parent, children (linked list), priority,...}

• id: unique name or number
• state vector: execution of process is sequence of state vectors

s0,…,sL,… where each sL, contains pointer to next instruction
and values of all values of all local, global variables; also includes
state of processor, address space allocated, associated
resources; in short, it contains that amount of information
requred by a processor to run process.

 example: In handout: state vector is CPU_State (record). Note
that when the process is running, this field is undefined.

• processor: number of processor running process when it is
running

• Main_Store: storage map describing address space of process,
containg bounds registers or list of memory blocks or pointers
to memory management structures

• Resources: list of all files, peripherals, etc., allocated to process
• Created_Resources: list of resources created by process (eg.

ports)
• Status: status of process
running: process running on processor
ready: process ready to run
blocked: process cannot logically proceed until it receives a

particular resource or message
halted: process has terminated
new: process just created
 The following state diagram describes when the process can

assume various states:

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 26

new ready running halted

blocked

Queues

We want to have some process running at all times, so maintain
queues of them.

• ready queue contains processes ready to run (really, PCBs of
those processes). Note: these queues may NOT be first-in-first-
out

• other queues in system: for instance, when a process asks to do
I/O to a disk, it gets put in the device queue for that device:

PCB#7 PCB#8

PCB#1

PCB#2

PCB#3 PCB#4

PCB#6PCB#5 PCB#9

•

•

•

•

•

•

ready

tape

disk

Process enters system, goes on ready queue, gets CPU (a CPU burst).
Then does I/O (an I/O burst); back to CPU (a CPU burst) ... until ends with
a CPU burst. This is called the CPU-I/O Burst Cycle.

Dispatcher

This actually transfers control of the CPU to the process to be run
(chosen by another routine called the scheduler, which assigns priorities).
If there is nothing in the ready queue, 2 options:

• dispatcher can loop
• dispatcher can start a null process, which has the lowest priority

but is always runnable; it may do nothing, or may compute
decimal values of π, or may play out chess endgames, or
whatever

Operation:

ECS 150 (Operating Systems) Beginnings of Operating Systems

Spring Quarter 2008 27

1. Is the current process (the one last run) to continue? If so,
return control to it by returning from the interrupt

2. If not, save current process' state vector
3. Obtain state vector of next process to run
4. Give it control.

General rule: you want it small and fast.

