ECS 150 (Operating Systems) Input and Output

Input and Qutput

Goal
To learn how input and output are done, and how the medium being
used affects the operations

Spring Quarter 2008 1



ECS 150 (Operating Systems) Input and Output

Kernel-Level | R in

Moving data to or from secondary storage is done by kernel routiness
called device drivers. Each device driver is associated with one (type of)
device, and all processes access the same set of device drivers by making
appropriate system calls. This leads to the issue of how the processes
view devices; the most basic issue is transparency ; the processes don't
care about the manufacturer, the model of the device, and in some cases,
the type of the device (i.e., whether it is a printer, tape drive, or another
process).
example: virtual devices: these are devices simulated by the kernel, with
data kept either in the main store or elsewhere; for example, IBM's
VM/CMS partitions the real disks into much smaller minidisks, and stores
data on those.
example: a printing spooler system; the program may think it is talking to
a printer, but in reality it is writing the data to a disk, from which it will be
sent to the printer.

We shall examine the issues involved in several steps:
(1) goals; what should a good process/device interface do?
(2) device hardware; what does a device look like?
(3) device interface; how are the devices connected to the computer?
(4) device drivers; what do the kernel modules interacting with devices

look like?

(5) process interface; how do the processes access devices?

Goals of Kernel-Level 1/0 Routines
(1) Character code independence
The kernel I/0 subsystem must translate character codes from
various different devices to a uniform internal representation; this is
done by the kernel just after the characters arrive in memory and
before they are passed to the process so that the programmer need
not worry about it.
¢ internal codes may be ASCII, EBCDIC, UNICODE, or something else.
(2) Device Independence
The process should not depend on one particular device; the
operating system should be free to assign any device of the right
type as appropriate; je, the process should not need to say “lp0” to
get printer number 0, but should be able to say “Ip” and let the
kernel select the printer.
e |tis very desireable that as far as possible, programs should be
independent of the type of the device; i.e., it should not matter if
input is taken from a tape, a disk, or a card reader.

Spring Quarter 2008 2



ECS 150 (Operating Systems) Input and Output

(3) Efficiency
I/0O operations are often a bottleneck; this should be minimized.
(4) Uniform treatment of devices
The intent is to keep device handling simple and error-free; but it
may be difficult in practice to handle all devices alike.

Spring Quarter 2008 3



ECS 150 (Operating Systems) Input and Output

Device Hardware

Disks
Disks are collected in a pack like stacked phonograph records:

arm

‘ head
—bplatter

— track

sector

o (portor
top view of of track)
_ZD platter

A cylinder is the same track on all disks in the pack (think of chopping
out one track on each of the platters by cutting straight down, and you'll
see where the name comes from). It is relevant because the arm moves
all the heads over the tracks with the same number in the different
platters.

Characteristics are:

data transfer rate: 2 megabits/sec

data is transferred in blocks with between 256 and 4096 bytes

(typically); data is always transferred in multiples of a block.

e the platters spin at 60 rotations per second.

e each platter typically has 1000 tracks

e each track typically has 30 sectors.

Floppies consist of one removable platter, and rotate more slowly than
larger disks.

A sector contains:

e data

e a bit indicating whether or not the sector is usable

e error checking information
(possibly) the sector number.

A cylinder is simply the set of tracks with the same track number on all
platters.

The operating system needs to know how the disk is formatted:

e the number of sectors per track

e the number of bytes per sector
The operating system may do formatting when the disk brought into
service; it can also discover bad sectors and mark them as unusable.

To read data, the operating system first seeks for the data by
positioning the disk arm on the track on which the data sits; typically
takes 20-40 ms. Hence there are three /latencies (delays) relevant:

Spring Quarter 2008 4



ECS 150 (Operating Systems) Input and Output

(1) seek latency: how long does it take the heads to get to the desired
cylinder?

(2) rotational latency. once the heads are over the right track, how long
does it take the right sector to rotate under the heads?

(3) transfer latency. once the heads are over the right sector, how long
does it take to transfer data to or from the disk?

Drums

A drum is a cylinder divided into circular tracks; it is just like a disk
except that there is one head per track, so the heads don't move; this
eliminates seek latency.

When drums are used, it is typically for swap space or as a backing
store; nowadays, disks or banks of memory chips are used instead.

Magnetic tapes

Magnetic tapes are used for archiving data, transferring data between
computers, and for intermediate storage of large amounts of data. They
are usually very portable between different operating systems and
machine architectures.
Some relevant characteristics:
there are 9 regions across the width of the tape (hence the term
nine-track tape); one bit is stored per region, so you can store 8 bits
for the character and 1 parity bit. This is called a frame.
Tape density is the number of frames per inch; usually 1600 or 6350
frames per inch. Density is the same throughout the tape.
Frames are grouped into records and records are grouped into files:

inter-file gap
< file L < file >
—] 7 7 N —
E record %record % record \record E
= 7 /{ —

<

inter-record gap

Records may be of any size, and successive records may have different
lengths; so, when the tape is being reading, there must be enough room
in the buffer to hold entire records.

Note you can only write at the end of a tape safely because the inter-
record gaps are not of reproducible size. So writing in the middle of the

Spring Quarter 2008

(9]



ECS 150 (Operating Systems) Input and Output

tape overwrites a record followed by an inter-record gap, the latter of
which may overwrite part of the next record.

Tapes usually contain a /abel, which is an initial record containing
information that describes the tape's contents, its owner, its serial
number, etc. Similarly, headers and trailers may surround files.

To read data, the operating system first seeks for the data by winding
the tape. So there are two /atencies (delays) relevant:

(1) winding latency: how long does it take to wind the tape to the
desired place?

(2) transfer latency. once the heads are over the right sector, how long
does it take to transfer data to or from the disk? (The times here
are comparable to those of disks; ~2 megabits per second)

Communications lines
There are three types of lines:

e simplex lines transmit data in only one direction;

e half-duplex lines can transmit data in either direction, but only one
direction at a time; and

® duplex lines can transmit data in both direcitons simultaneously.

Some relevant characteristics:

e baudis the number of electrical transitions per second on the line,
which is usually (but not always) equivalent to “bits per second;”
typical baud rates are:

e for a terminal line: 110, 300, 1200, 2400, 4800, 9600, 19200

e for aleased line (computer to computer): 56000

ASCII character codes take 7 or 8 bits; the remaining 2 or 3 bits are
used as parity checks and to synchronize the sender and receiver.

All conversing parties must agree on conventions (called protocols) for

formatting information, interpreting messages, etc. For synchronous

transmissions, the sender and receiver share a common clock and know
when to sample the wire for transmission.

e Each transmission will be preceded by a header containing a
prearranged pattern of bits which enables the receiver to adjust its
clock to match that of the sender.

e Transmissions are split into frames each of which is preceded by a
header

e The header pattern cannot appear in the message, so:

e if the transmission is bit-oriented, put an extra bit in; this bit will
be stripped when the message is read (called buit stuffing)

e if the transmission must have multiples of some byte size, the
transmission is character-oriented, so stuff a byte (called the
escape character) instead of a bit. As an example, the BISYNC
protocol sends messages with the following format:

Spring Quarter 2008 6



ECS 150 (Operating Systems) Input and Output

<SYN><SYN><SOH>header<STX>text<ETX>checksum
The escape character is <DLE>; hence if the character <ETX>
appears in the text, it must be escaped by sending <DLE><ETX>
or else the receiver will mistake it for the end of the text and
become confused when it interprets text as the checksum.

Spring Quarter 2008 7



ECS 150 (Operating Systems) Input and Output

Device Interface

The device interface is the lowest level of interaction between the
machine and the 1/0 device; the device driver sits directly above it. The
interface mechanism is the device registers, which are used for:

e transferring status information from the device to the CPU;

¢ transferring instructions from the CPU to the device;

¢ transferring data from the device to the CPU;

¢ transferring data from the CPU to the device.

Review the PDP-11 polling and interrupt-driven I/0O schemes quickly.
Complex devices are usually connected to a controller, and the controller
to the CPU. The controller monitors the device status, knows the format
of the medium, etc., and accepts orders from the CPU as well as
accepting or returning data.

Channels are subsidiary CPU's that use a different machine language;
the instructions are commands and sequences of commands are channel
programs, which usually are stored in the main store as used by the CPU.
They typically use DMA. Command chaining is the ability to send (or
take) channel programs containing more than one command. The term
data chaining (also called scatter-gather) is the ability to gather output
data from, or scatter input data to, many places. A selector channel
manages many devices, of which only one may transfer data at a time. A
multiplier channel manages many devices, all of which may transfer data
simultaneously.

Spring Quarter 2008 8



ECS 150 (Operating Systems) Input and Output

Device Drivers

These serve three functions:

e they try to put a regular structure on those parts of the operating
system that interact with devices;

e they provide a standard interface to the rest of the kernel;

e they serve the rest of the operating system and the device.

Think of a device driver as having two parts: the lower part deals with
the device itself, and the upper part with the rest of the operating
system:

e The upper part accepts requests from the operating system (eg., the
storage manager asks it to write out a page to backing store); this
part then transforms these requests into entries in a pending work list
for the lower part.

e The lower part wakes up when there is an interrupt, or when new work
is added to the pending work list. When awakened, it disables other
interrupts from the same device.

Example: Clock device driver
There are two types of clock devices:

1 1
line clock: generates an interrupt every tick (% or 5o second)

¢ It may have a register that counts ticks since the last reset.

e |t has a backup battery (to handle short-term power failures).

¢ |t may have a register counting ticks missed if interrupts are not
serviced by the CPU (for priority reasons).

programmable clock:

® a count register can be set by software

e subtract 1 from the register per time interval (say, ms or tick)
¢ when the count register contains 0, an interrupt occurs

When an interrupt occurs, the following steps are done:

(1) the system's software time structure is incremented;

(2) if the clock is used for scheduling, decrement the remaining time field
of the current job is decremented and if 0, the scheduler is invoked;

(3) accounting is done;

(4) if there is no programmable clock, decrement a counter for the next
alarm; if this counter is 0, any kernel routine waiting for an alarm is
invoked.

(5) if the current process is being profiled, figure out where it is (by
looking at the program counter), and update the appropriate
counter.

(6) return to interrupted process

Example: Disk device driver

Spring Quarter 2008 9



ECS 150 (Operating Systems) Input and Output

These must provide the illusion of a virtual disk that is a linear array of
sectors; to do this, the sectors are numbered like elements of an array.
Thus, sector s on track t in cylinder ¢ is numbered:

a = ((c x (#tracks/cylinder) + t) x (#sectors/track) + s

so other parts of the kernel can write to sector number a, rather than

sector number (c, t, s).

The other requirement is that the disk driver reduce the effect of the
latencies inherent in accessing the disk; this is typically done by:

(1) overlapping I/0 and computation;

(2) storing large objects in contiguous regions on the disk, so once the
first seek is done, no more seeks are needed to write out the object;
and

(3) ordering outstanding disk requests.

The last is particularly important. Assume:

only one disk drive (if there are more, schedule them separately);

all 170 requests are for single, equal-sized blocks;

the requested blocks are distributed randomly over the disk pack;

the disk drive has only T moveable arm, with all heads on it

the seek latency is linear in the number of tracks crossed (this is not

true if the disk controller uses replaces bad sectors with those in

tracks at the end of the disk);

e the disk controller does not introduce appreciable delays; and

¢ read and write requests are identically fast.

Evaluation of policies involves considering:

¢ how long requests must wait as a function of load (/e, the frequency of

requests, measured in requests per second)

e the mean and variance of the waiting time for each request (for

example, a low mean but high variance means some requests will take

a long time).

There are several common policies; the handout gives an example of how

they work:

(1) First Come First Served (FCFS): no starvation of requests possible; all
eventually get serviced. It has a fairly low variance but becomes
saturated easily (saturation occurs when the load becomes greater
than the driver can handle, so there are always requests waiting).
Problems:

e every request is likely to require a seek;
e for low loads, it works fine, but for high loads, the latencies
increase the mean of the waiting time appreciably.

(2) Pickup: this is FCFS, but on the way to the track where the next
request lies, any queued requests lying on an intermediate track are
serviced. For high loads, this decreases the mean waiting time a bit.

Spring Quarter 2008 10



ECS 150 (Operating Systems) Input and Output

(3) Shortest Seek (Time) First (SSF, SSTF):Service the request lying on
the closest track. It saturates at the highest load of any of these
policies.

Problems:

e Starvation is possible, but means that the disk can't keep up with
disk requests, which usually indicates other, more severe problems
(specifically, thrashing).

e The innermost and outermost tracks are discriminated against,
leading to a variance larger than that of FCFS.

(4) SCAN: the head moves from the outermost track to the innermost
one, then back out, then back in, ..., servicing requests on the way.
This variant of SSF reduces the problem of discrimination against the
outermost and innermost tracks, thereby lowering the variance.
Problems:

e |t is still subject to starvation.

(5) N-STEP SCAN: like SCAN, but only requests waiting when the disk
heads begin a sweep are serviced; all others wait until the next
sweep. This prevents starvation and lowers the variance even
further.

(6) C-SCAN: This is like SCAN except in one direction only (hence the
name, Circular SCAN); in it the head moves from the outermost track
to the innermost and then jumps back to the outermost track. This
variant of SCAN eliminates the problem of discrimination against the
outermost and innermost tracks, and provides more uniform waiting
times.

In practice, the last three are implemented by having the head move
only as far as there are outstanding requests in each direction (so if the
first request is at track 7, the second at track 9, and the arm is moving
outward, the arm will stop at track 7 and then change direction, rather
than continue to the outermost track and reverse direction there. These
variants are called LOOK, N-Step LOOK, and C-LOOK respectively.

At very heavy loads it is useful to use a scheduling policy to minimize
rotational latency (called sector queueing). This involves ordering
requests for the same track so all such requests can be written in a
minimum number of rotations of the disk. In practice, each sector has its
own queue, and requests for a given sector are put into the appropriate
queue; when that sector rotates under the head, the first request in its
queue is serviced. It is most often used with fixed-arm devices such as
drums.

Spring Quarter 2008 11






ECS 150 (Operating Systems) Input and Output

Pr Interf

Underlying this interface is the concept of a file; this concept (usually)
does not exist at the lower level. Files provide the means for processes
to interact with devices, and in some cases data structures such as kernel
memory or a sink (/dev/nullin *NIX). Given this metaphor, the system
needs one extra system call to handle actions that can't fit into the
metaphor, such as changing speed on a terminal line.

System Calls
open the file

device descriptor = open(device name, intent)

¢ the descriptor can then be used in other references to the file;

e this call may block until the device is ready, or return an error code;

e this call also checks privileges.
close the file

close(device descriptor)

e the device driver does any needed clean-up (eg, rewind tape)
position the file pointer

position(device descriptor, where)

e position the read/write pointer associated with the device in a

certain way; eg, skip over records on a tape or move to the end of
a file
read the file

read(device descriptor, memory address, amount)

e this call transfers data from the device to memory;

e it reads at most amount, and may read less
write the file

write(device descriptor, memory address, amount)

e this call transfers data from memory to the device
miscellaneous control commands

control(device descriptor, code)

¢ this is the call for all actions not fitting into the metaphor, and is

used to do device-specific things.

The read and write commands have two forms, blocking and non-blocking.

¢ a blocking transfer is synchronous; when the next statement
executes, the data has been transferred yo or from memory.

¢ a nonblocking transfer is asynchronous; the transfer may or may not
be complete when the next statement is executed. To determine
when the transfer completes, one cal use polling or a virtual interrupt.

With the latter, the process requests an interrupt from the kernel

when the transfer is finished. This requires the system call

handle(device descriptor, routine)

Spring Quarter 2008 13



ECS 150 (Operating Systems) Input and Output

which instructs that when the asynchronous input finishes, the process
is to be interrupted and routine executed.

If the read or write system call is non-blocking and the process
needs to do blocking 170, two system calls are needed:

wait(device descriptor, timeout)
blocks the process until transfer done or for timeout time, whichever is
least.

When doing non-blocking 170, do not modify that portion of
memory involved in the transfer or the results of the transfer will
be undefined! (Some kernels may copy data to their own buffers as
part of the system call, before control returns to the process.)

Spring Quarter 2008 14



