
ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 1

M e m o ry M a na gem e n tM e m o ry M a na gem e n t

Goal

CPU gains related to scheduling require that many processes be in
memory; so, memory must be shared. We shall discuss memory
management schemes; the selection of which one to use depends
especially on the hardware available.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 2

How Programs Interact With Memory

 When a program is written and then run, the following steps take
place:

compile, assemble to object module
linker to load module
loader to in-core image
execute

Addresses in each of these are:
SOURCE symbolic
compile bind to relocatable address, i.e.,

bigmod + 4
loader (usually) bind relocatable to

closest address
A program executes using absolute (also called physical) addresses;
here's what the instruction execution cycle looks like:
 fetch instruction at address A
 decode it
 (poss) fetch operands at addresses B1, ..., Bn
 execute instructions
 (poss) store results at addresses D1, ..., Dn
So the memory unit sees just a stream of addresses, and is never told
how this stream is generated. We are just interested in this sequence.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 3

Memory Management and Hardware

Bare Machine

This type has no memory management and no operating system
software.
simple: no special hardware
 no services
problems: operating system has no control over interrupts
 no monitor to process system calls or errors
 no job sequencing
This type of machine is used in dedicated systems when simplicity and
flexibility are required and users are willing to program support
routines.

Resident Monitor

In this type of system, there are 2 sections of memory: one for the
monitor, the other for the user. The monitor is usually put wherever
more convenient; as the interrupt vectors are usually in low memory,
so is the monitor.

In such a system, the hardware must protect the monitor code
from the user; this is often done with a fence address as follows:

CPU
address

address ! fence?

fence address

yes

trap

no
memory

Note that every reference must be checked, which slows memory
accesses down. A good hardware design can reduce effective access
time by overlapping the comparison with other activities.
The comparison is not done when running in monitor mode.

Specifying fence address
• build the fence address into the hardware as a fixed constant; this

raises some questions, such as:
• how is that constant selected?
• what happens if the monitor changes size?

• use a fence register to hold the fence address; in this case:
• the register is always used in the address bounds check

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 4

• the fence register may be loaded in monitor mode only, using a
special, privileged instruction

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 5

Relocation

 Typically, the address space of a computer starts at 0, but as the
monitor is in low memory, the address space of a user process starts at
the first address after the fence address. So when are program addresses
bound to absolute addresses?
• at compile time? if the fence address is known, this is possible.
 problem: if the fence address changes, the code must be recompiled.
• at load time? In this case, the compiler generates relocatable code.
 problem: if the fence address changes, the code must be reloaded
Further, both of these assume the fence address is static during
execution; if it changes, then the program could produce invalid addresses
midway through execution. This means that under these schemes the
fence address can be changed only when no user processes are running.
This becomes a big problem when the monitor uses transient monitor
code. This involves little-used routines within the monitor. To keep the
monitor small, the transient monitor routines are not loaded until needed;
when they are needed, the monitor size increases, so the fence address
changes; when the routine is no longer needed, it is deleted and the fence
address changes again. Hence allowing the monitor to change size
dynamically is good, and neither of those alternatives allow it.

There are two ways around this:
(1) Load the user program in high memory down towards the fence

register; either the user or the monitor process can use the space
between them. This technique was used in the PDP-11's early
operating systems:

low high

resident

monitor

user

process

directions of growth
(2) Bind the process addresses at execution time; here, the fence

register (called a relocation or base register)is added to every
address reference, so if the fence register contained x, address 205
would really refer to absolute address x+205; this is called dynamic
relocation:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 6

CPU
logical

address

base

register

memory
absolute

address

 The CDC 6600s use this scheme.
 Advantages:

• The user process never sees the absolute (physical) addresses.
• If the base register is changed, the user memory need only be

moved to the correct locations relative to the new fence address.
 With this scheme, the user process sees the logical addresses as 0,
..., max , but the physical addresses are really b, …, b+max, where b is
the fnece address (contents of base register). Note that all
information passed to the operating system for use as memory
addresses (such as buffers for I/O) must be relocated.]
This concept of the logical address space being mapped to a separate
physical address space is central to proper memory management!

(3) Swapping
 This uses the idea of a (single-user) resident monitor, but for many

processes by keeping only one process resident and putting all
others on backing store (called the swap device). The first idea is to
use this when the system does not have enough memory for more
than one user process at a time.
• done in CTSS and the SDC Q-32 resident monitors, which make

the rest of memory available to current users; it is still used when
there is not enough memory for all jobs

 This was later generalized to many resident processes.
• Called swapping; processes resident in memory are swapped.
• The system needs a backing store which is big enough to hold

copies of all memory images for all users and provides direct
access to them.

 Executing a process now looks like this:
• CPU calls dispatcher
• dispatcher looks; if process in memory, runs it
• if not, swap out resident process
• swap in desired process
• load registers as normal
• run!

 Swap Time

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 7

 This greatly increases the time needed to switch context, so we want
execution time per process to be long relative to swap time.
Assume:
• the process occupies 20,000 words of memory;
• the backing store is a fixed head drum with 10 ms rotational

latency; and
• the transfer rate is 363,000 words/sec.

 This means that the time to move a process into or out of memory is

10ms + 20000
363000 sec = 10 ms + 55.1 ms = 65.1 ms

 so the time needed to swap two processes (one out, the other one
in) is approximately 130ms for two 20,000 word processes.

Optimizations
• Swaps only part of the memory used by a process rather than all of

the memory. In this case, processes must keep the monitor
informed of changes in memory requirements (that is, request
memory and release it).

• Speed up the backing store's performance. This is often done by
using memory chips for swapping rather than a drum or disk
(although the interface is usually that of a drum or disk, for
transparency reasons)
• IBM's large core storage (LCS) system has an access time of 8

ms, and a transfer rate of 400,000 word/sec, so to swap one
20,000 word process takes

 8ms + 20000
400000 sec = 8 ms + 50 ms = 58 ms

 or 116 ms to swap one 20,000 word process out and another
in.

• CDC's extended core storage (ECS) system has an access time
of 3 ms and a transfer rate of 107 words/sec, so to swap one
20,000 word process takes

 3ms + 20000
10000000 sec = 3 ms + 2 ms = 5 ms

 or 10 ms to swap one 20,000 word process out and another in.
• overlap swapping with process execution:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 8

fence

address

monitor

swap-out

buffer

swap-in

buffer

user

•!The memory in the swap-out buffer

!!is being written out;

•!The memory in the swap-in buffer

!!is being read in; and

•!The memory in the user area is

!!being used by the executing

!!process.

When processes are to be swapped:
(1) move the contents of user area to the swap-out buffer;
(2) move the contents of swap-in buffers to the user area;
(3) begin I/O to write swap-out buffer to backing store;
(4) begin I/O to read next process being swapped in to swap-in

buffer; and
(5) execute user process
Problem: If a high speed swapping device is used, there may not be
any spare cycles to move memory associated with processes to the
buffers; e.g., ECS, in which the transfer rate is equal to the rate at
which main memory can be accessed.

Note that only completely idle processes can be swapped. For
example, if a process is blocked on I/O and the I/O operations will
access the process buffers directly, that process cannot be swapped.
Two ways to handle this situation:
• never swap a process with I/O pending; or
• have all I/O operations move data into or out of operating systems

buffers only (and then transfer the moved data to or from disk at
leisure, such as when the program is swapped in again)

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 9

Simple Memory Management Schemes

As swapping is so expensive, we'd like to avoid it. This leads to the

idea of multiple partitions of memory, where multiple processes are
stored in memory simultaneously, each in a different location. The
question is how memory is allocated so processes need not be swapped
out.

In general, memory is divided into partitions or regions, each with one
program.
• the degree of multiprogramming is bounded by the number of

partitions
• when a partition is free, put a job on the ready queue into the partition
Note the memory associated with each job is contiguous. Two schemes
which do this are:
• multiple contiguous fixed partition allocation (MFT)
• multiple contiguous variable partition allocation (MVT)
These require hardware to prevent access outside assigned memory
regions. One of two mechanisms is typically used:
• bounds registers keep track of the uppermost and lowermost physical

addresses
• base and limit registers keep track of the uppermost logical address

and the smallest physical address (used in the CDC 6600 and its
descendants)

Fixed Regions (MFT)

Here the regions do not change size:

monitor

small

medium

large

10K

4K

6K

12K

32K

MFT Job Scheduling

When a job enters the system, it is put onto the job queue; the long-
term scheduler takes both memory requirements and available partitions
into account. Then a job is allocated space and moved into the partition,
at which point it can go onto the ready queue; it competes for CPU time

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 10

until it ends, at which point the memory partition is freed and a new job is
brought in.

Allocation of Memory

All these require some classification of jobs based on memory needs as
they enter the system. Either the user must specify a maximum amount
of memory or the system can try to determine it automatically.
(1) each memory partition has its own queue, and the job goes into the

smallest region that will hold it.
 Example: 3K job and 5K job go into the queues associated with the

small and medium partitions, respectively.
(2) all jobs go into 1 queue, and when the scheduler selects the next job

to run, it waits for the partition to become available.
 Example: if a 3K job came first in the queue followed by a 5K job, and

the 6K partition became available, no job would be placed into it,
because the next job in the queue is to go in the small partition.

(3) all jobs go into 1 queue, but when the scheduler is to bring in a job, it
runs down the queue and picks the next job that would fit into an
appropriate free partition

 Example: if a 3K job came first in the queue followed by a 5K job, and
the 6K partition became available, the 5K job would be put into the
6K partition even though the 3K job precedes it in the queue. (Note:
if the 12K partition became free instead of the 6K partition, the 5K
job sits in the queue as its associated partition is still occupied.)
• the scheduler selects the next job that fits into its free partition

even if higher priority jobs are waiting ahead of it but
are too large to run.

(4) all jobs go into 1 queue, but when the scheduler is to bring in a job, it
runs down the queue and picks the next job that would fit into any
free partition

 Example: if a 5K job were in the queue, the small and medium
partitions were occupied, and the large partition became available,
the 5K job would be put into the 12K partition.

(5) Now add swapping and give each of several jobs fitting into one
partition some time.

 Example: We have 3 partitions; schedule all jobs associated with one
partition using round robin. It works like this:
• round robin quantum expires;
• memory manager starts swapping out the job currently in the

partition and swapping in another job associated with that
partition;

• the CPU scheduler gives a time slice to a job in another partition
…

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 11

For this to work the memory manager must be able to swap jobs fast
enough so there are always jobs in memory, ready to execute, when
the CPU is rescheduled.

(6) When a high priority job comes in and a lower priority one is using
the appropriate partition (or lower priority jobs are using all available
partitions), swap out a lower priority job for the higher priority one
demanding service.
• when the higher priority job is done, swap the lower priority job

back in and continue
• this technique is called roll-out/roll-in
Normally, swapped jobs return to same partition, but whether this
must be done is dictated by the partition allocation policy and the
relocation method:
• with static relocation, the job must return to its original partition.
• with dynamic relocation, the job need not return to its original

partition.

Problems: suppose a job needs more memory, or tries to allocate more
memory, than the partition has. MFT gives the job a fixed amount of
memory; the job may use less, but not more. So what can happen if it
requests more?
(1) terminate the job
(2) return control to the job with an error indication that the request

cannot be satisfied
(3) swap out the job and wait for a large enough partition to become

available; this is viable only if relocation is dynamic.
Another problem: suppose your system has 120K of memory available,

and you run 20K jobs all day, except for one 80K job which runs
once a day. You'll need an 80K partition to run that job, which
means during most of the day you'll be wasting 60K (except when
the 80K job is running).

Variable Regions (MVT)

This scheme allows partition size to vary dynamically to solve the
second problem above. The operating system keeps track of what parts
of memory are allocated and what parts are free (the holes) using bit
maps or linked lists (or some other appropriate structure).

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 12

queue

(1)!60K

(2)100K

(3)!30K

(4)!70K

(5)!50K

mon.
40

(1)

(2)

(3)

100

200

230

256

mon.
40

256

(1)

in
(2)

in

(3)

in

mon.
40

(1)

(4)

(3)

100

200

230

256

170

(2)

done

(4)

in

mon.
40

(5)

(4)

(3)

100

200

230

256

170

(1)

done

(5)

in

90

Note there are set of various-sized holes throughout memory; if the hole
is too big for the next job, the hole is split and the unused portion is
returned to the set of holes. When the job ends, thge memory it was
using is returned to the set of holes and is combined with adjacent holes.
This all requires some sort of allocation scheme.

Allocation Schemes

The hardware support required is the same as for MFT (namely, bounds
registers or base and limit registers); the difference is in the software.

Memory is usually allocated in chunks to avoid having to keep track of
very small holes

The more common schemes for placing a job in memory are:
(1) best-fit lists the holes in order of increasing size. A job is put into

the smallest hole it fits.
(2) worst-fit lists the holes in order of decreasing size. A job is put into

the first hole in the list.
(3) first-fit list the holes in order of increasing base address. A job is

put into the first hole it fits.
(4) next-fit is like first-fit, except the search for a hole the job fits begins

where the last one left off.
(5) buddy system deals with memory in sizes of 2i for i < k. There is a

separate list for each size of hole. Put the job into a hole of the
closest power of 2; if it takes up under half, return the unused half to
the free list.

 Example: You have a memory of 16K, and a 3K job comes in. The
nearest power of 2 is 4, so:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 13

16K

8K

8K

8K

4K

4K
3K goes

here

 When done, the process reverses and blocks coalesce.
Which works best? The buddy system.

Job Scheduling

The scheduler has a list of available block sizes and a queue of jobs
wanting memory. The job scheduler orders jobs according to its
scheduling algorithm, and then memory is allocated until there is not
enough to allocate to the next job. At that point, two things can be
done:
(1) skip to the next job in queue which can fit into the available memory

hole; or
(2) wait until enough memory becomes available for the next job to be

run.
Within a partition, MVT wastes little or no space (the wasting of space
within a partition is called internal fragmentation), but between partitions
it may waste lots of space (the wasting of space between partitions is
called external fragmentation),
no internal fragmentation; for example, in the earlier picture, job (5) could
have been run simultaneously with (1), (3), and (4) were the two holes
combined. But they weren't, so we has 56K of external fragmentation.
The placement algorithm chosen can have a serious impact on the amount
of external fragmentation.

Compaction

This refers to moving the contents of memory about in order to
combine holes. For example, in the above, move job 3's memory to 170K
would combine the holes at 170K-200K and 230K-256K into one hole at
200K-256K.
 This is not always possible, and dynamic relocation is a necessity; you
just copy the contents of the memory being used by the process, and
change the base register appropriately.

Various schemes:
(a) move all jobs to one end of memory; this can get expensive.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 14

(b) move enough jobs to get the memory you need.
Example: the CDC 6600 Scope Operating System kept 8 jobs in main
memory at once, and used compaction on job termination to keep one
hole at the bottom of main memory

Swapping

This can be useful too. Rolling out a job releases memory; rolling in
can cause problems if static relocation is used (as it must have the same
partition as when rolled out). Using dynamic relocation, though, you can
swap the job out and then swap it in at its new location.

Reducing external fragmentation:

This can be done in a number of ways:
• reduce the average job size
• break memory into two parts, one for instructions and one for data.
 example: PDP-10 had 2 base/limit register pairs, the high order bit of

each indicating which half of memory (high or low) the pair refers to.
Instructions and read-only data go into high memory and variables go
into low memory (by convention).

 example: UNIVAC 1108 also had 2 base/limit register pairs, one for
instructions and one for data. The instruction pair is read-only, so
users can share programs.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 15

Memory Fragmentation

Say a job needs w words of memory, and a partition has p words.

Then:
internal fragmentation exists when w - p > 0 (ie, memory internal to a

 partition is not being used)
external fragmentation exists when w – p < 0 (ie, a partition is unused

and available but is too small for any waiting job)
example: A system has 22K memory available; it is divided into 4
partitions of sizes 4K, 4K, 4K, and 10K. The queue has:

7K job ←10K partition, leaving 3K of internal fragmentation
3K job ← 4K partition, leaving 1K of internal fragmentation
6K job waits
two 4K partitions unused, leaving 8k of external fragmentation

Total fragmentation: 8K+3K+1K=12K, which is over 50% of available
memory!
example: A system has 22K memory available; it is divided into 3
partitions of sizes 4K, 8K, and 10K. The queue has:

7K job ← 8K partition, leaving1K of internal fragmentation
3K job ← 4K partition, leaving1K of internal fragmentation
6K job ← 10K partition, leaving4K of internal fragmentation
all partitions used, leaving 0K of external fragmentation

Total fragmentation: 0K + 4K + 1K + 1K = 5K, which is 23% of available
memory; much better.
example: partitions exactly match job sizes (in the above, the 22K
memory is divided into partitions of 3K, 6K, 6K, and 7K).
Total fragmentation: 0K (ie, none)!

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 16

Paging

This solves the compaction problem of MVT by no longer requiring
program memory to be contiguous. The hardware splits each logical
address into two parts; the high bits represent the page number and the
low bits the page offset. A page table has the base address (frame
number) of each page in physical memory; this base added to the offset
to get the associated physical address:

page 0

page 1

page 2

page 3

logical

memory

4

2

0

5

page

table

page 2

page 1

page 0

page 3

physical

memory

A frame is the physical memory into which a page is put; a page is the
unit of logical memory put into physical memory. Both are of the same
fixes size, which is defined by hardware, and is usually a power of 2; some
examples:

IBM 370 2048 or 4096 bytes/page
XDS-940 2048 words/page
NOVA 3/D 1024 words/page
DEC-10 512 words/page

If the page contains p words, the logical address l gives:
page number = l div p
page offset = l mod p

If p is a power of 2, this can be done by examining the bit representation
of l directly:

page number = high order bits of p
page offset = low order bits of p

example: for a 16 word memory, and a page size of 2 words:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 17

a b c d e f g h

0 2 4 6

logical

memory
2 6 4 5

page

table

0 1 2 3

a b

0 2 4 6 8 10 12 14

c de f g h
physical

memory

To obtain the physical address of word h (word number 7):

page number = 7 div 2 = 3
page offset = 7 mod 2 = 1

The page table says page number 3 is mapped into frame number 5, so
the base of the frame is 5 x page size = 10, and hence the physical
address corresponding to logical word 7 is 10 + 1 or 11.

This transformation is done for every logical address, so it is dynamic
relocation.

Job Scheduling

Job size is given in pages; if a job has n pages, it needs n free frames.
Note there is no external fragmentation! But there will be internal
fragmentation if the last page of the job uses less than 1 full page. If the
job size and page sizes are independent, the expected internal
fragmentation is half a page per job; so to minimize internal
fragmentation, use small page sizes

Page table information is stored in the process' PCB; if the process is
swapped back in, those values may have to be updated to reflect the new
placement.

Page table implementation

If there is a small number of pages, use registers for the page table.
Loading and modifying their contents requires privileged instructions.
examples: XDS-940 8 pages 2048 wds/page 8 registers
 NOVA 3/D 32 pages 1024 wds/page 32 registers
 SIGMA 7 256 pages 1024 wds/page 256 registers
These can be built from very high speed logic, so paging address
translation is efficient.
If there is a large number of pages, then store the page table in memory,
and use a Page Table Base Register (PTBR) to point to it.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 18

CPU

p

o

p

physical

memory

page table

frame

+PTBR
frame

frame o

physical address

p o virtual

address

Changing page tables in a context switch simply requires changing 1

register. Accessing a physical address given the logical one requires 2
memory accesses:
• one to get the value in thr page table;
• one to get the desired quantity.
This slows memory accesses by a factor of 2.
Optimization

Use a cache (associative memory, look-aside memory, etc.). These are
registers storing a (key, value) pair and given the key, this hardware
compares it with all the registers at once and returns the corresponding
values. Very fast but expensive!

Caches contain only a few page table entries, so when used they are
used like this:

• get page number from logical address
• check cache for corresponding frame number; if found, use the

frame number (this may take as little as 0.1 the time of a
memory access)

• if not in cache, access memory to get frame number
• add page offset to frame number

The efficiency of caching is measured by the hit ratio (the percent of time
the page number is found in the cache).
example: it takes 50ns to search the cache, and 750ns to access
memory.

in cache: mapped memory access takes 50ns + 750ns = 800ns
not in cache mapped memory access takes

50ns + 750ns + 750ns = 1500ns
The effective memory access time is the average time needed for a
memory reference:
 hit ratio ¥ time needed to reference when page # in cache +

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 19

 (1 - hit ratio) × time needed to reference when not in cache
example: in the above, an 80% hit ratio gives an effective memory access
time of:

0.8 ¥ 800ns + (1 - 0.8) × 1550ns = 956ns

for a slowdown of 956-750
750 = 27.4%, and a hit ratio of 90% gives

0.90 × 800ns + (1 - 0.9) 1550ns = 875ns

for a slowdown of 875-750
750 = 16.7%).

Sharing Pages
Pages of re-entrant code (non-self modifying code, pure code) can be
shared simply by putting appropriate entries in the page tables:

C2

data 1

C1

data 2

memory

C1

C2

data

job 1

4

2

0

page

table

C1

C2

data

job 1

4

2

3

page

table

0

1

2

3

4

5

Here the total space used with sharing is 2 pages for C, 3 data pages
The total space used without sharing is 2 pages for C, 3 data pages
It is critical that shared code not be changed; so this must be enforced
by the operating system, and not by the code itself.

Protection
 Associate protection bits with each page. These bits are kept in the
page table:

• 1 bit for read/write or read only
• 1 bit for valid/invalid
• additional bits for other forms of protection

With these the system can verify there is no writing to a read-only page
while the physical address is being computed; if there is such writing, a
trap to the operating system occurs.

How il legal addresses get trapped
 The operating system sets a bit for each page to allow/disallow
access.
example: 14-bit address space (0 … 16383), and the program uses
addresses 0 … 10468. The page size is 2048 words/page. Hence

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 20

ppages 6 and 7 cannot be accessed. As an example of internal
fragmentation, note that words up to 12287 can be accessed because
page 5 contains some part of the program, and you can't deny access to
part of a page (it's all or nothing).

A quick review of what we've done so far, but from another direction:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 21

Views of Memory

The user's program sees one contiguous memory space.
The operating system sees the user's program scattered throughout

physical memory .
How can these be reconciled? Because the address translation

mechanism maps logical memory locations to physical locations, under the
control of the operating system.

This means:
• the logical and physical addresses may be different
 example: the XNS-940 has a logical address of 14 bits but a physical

address of 16 bits; the page number (3 bits) goes into the Page Table
to select a 5 bit frame number. Hence there is up to 4 times as much
physical memory as one user can address

This technique was used when 15/16 bit address spaces grew to 17/18
bits as memory prices dropped:
• the logical addresses were still 15/16/ bits;
• the physical addresses became 17/18 bits.
Users could not use more memory than before, however.

The operating system is aware of what frames are allocated, what
frames are available, the total number of frames, etc.; all this is stored in
a global frame table , which is like a page table but has one entry per
frame. The entry indicates if the frame is allocated and if so, to which
process.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 22

Segmentation

Now alter the user's view of memory slightly; instead of sets of equally-
sized blocks of instructions or data, think of a program as a collection of
variable-sized segments:

• 1 segment per subroutine or data structure
• segments are of variable length
• words (elements) identified by offsets into segment

This form of memory management is called segmentation:
• the logical address space is a collection of segments,
• segments have a name and a length
• addresses specify the name of the segment and the offset

into that segment
In paging, the hardware divides the logical address into a page number
and offset; but for a segmented system, the operating system is given
the segment number and the offset. (It is often generated by the
compiler, although the user may do it directly — the “.text n” construct
in many assemblers says to put the following instructions into text
segment n.)

Segments are "named" by numbers because it's the easiest thing to
do. When a program is assembled, the assembler (or compiler)
constructs segments appropriate for the program.
example: In a C program, there might be:

• a segment for global variables
• a segment for the process call stack (in which arguments are

stored, values returned, etc.)
• segments for the code for each function
• segments for local variables for each function

The loader assigns segments numbers.
Users refer to objects by a pair (segment name, offset) that must be

mapped to a physical address. A Segment Table is used for this:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 23

CPU (s,d)

s

baselimit

<

trap

d

s

no

yes
+

physical

memory

segment table

limit base

+STBR

>
yes

no

trap

STLR

limit base

1000

400

400

1100

1000

1400

6300

4300

3200

4700

segment

table

4

3

2

1

00

1

2

3

4

segments
1400

2400

3200

4300

4700

5700

6300

6700

segment 0

segment 3

segment 2

segment 4

segment 1

memory

Implementation
 Two techniques, as with paging:
(1) Keep the segment table in registers
 example: the PDP-11/45 has 8 segment registers; this means

addresses have a 3 bit segment number and a 13 bit offset.
This allows up to 8 segments of 8192 bytes each.
Each entry in the segment table stores a base, a length, and some

access control bits

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 24

example: the B5500 has 32 segments of1024 words, so segment
numbers are 5 bits long and offsets are 10 bits.
Problems: too few segments, too little memory per segment

(2) Keep the segment table in memory
 In this case, the Segment Table Base Register points to the base of

the segment table, and the Segment Table Length Register contains
the number of segments for the program. Hence two steps to
getting the physical address, given a logical address (s,d):

(1) Check that s < contents of STLR; if not, bad address
(2) The location of the entry for the segment is STBR[s]

 Now proceed as above.
As with paging, there will be 2 memory references per logical address;
using a cache to hold the most recently used segment table entries
reduces the effective memory access time. Using 8-16 such registers
reduces the delay to 1.1 or 1.15 times that of unmapped memory access

Protection

Segments represent semantically defined portions of programs, so all
entries in a segment are protected in the same way. For example,
instruction segments are usually read-only, execute-only.
 Typically associate protection bits with each segment table.
 Each array can be put in its own segment, which allows automatic
bounds checking!

Sharing

Segments can be shared:

ed

data

ed

data

process 1 process 2

2528

8550

4306

9000

limit base

0

1

0

1

0

1

seg table

2528

1223

4306

6834

limit base

0

1

seg table

4306

6834

7957

9000

17550

ed

data 2

data 1

memory

This means you need keep just one copy of non-writeable segments in
memory! Also, you can share parts of program; for example, if 2
FORTRAN programs call sqrt(x), stick sqrt(x) into its own segment and
keep just one physical copy of it in memory.
Some subtleties:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 25

• a conditional jump in a shared segment uses an address to transfer to;
that address is a (segment number, offset) pair. The segment number
is that of the code segment. So if it is shared, the shared code
segment must have the same number in all sharing processes.

 example: Sqrt shared; in one process it's segment number 4, and in
another, it's segment 17. How can sqrt refer to itself? It can't; so it
must have a number common to all processes sharing it.

solutions:
• only share read-only data segments without any pointers (which

contain addresses)
• share code segments which refer to themselves indirectly
 example: addresses specified as offsets from current PC
 example: GE 645: addresses specified relative to a register containing

the current segment number.

Fragmentation

Note that paging has a fixed size page length, but segmentation uses
variable length blocks. So finding room for the segments is the dynamic
storage allocation problem; use the first-fit, best-fit, ... algorithms.

The amount of external fragmentation depends on job scheduling and
segment size; if there's no room, the system can:

• wait until there is room;
• skip this job and put in the next one that fits;
• compact memory

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 26

Segmentation and Paging

These can be combined in two ways:
• Segmented paging
 Segment the page table; that is, each entry in the segment table

contains the base and length of (part of) the page table.
• logical address is (page number, page offset), but the page number

itself is (segment number, segment offset)
 So:

1. get segment number, add STBR
2. get segment table entry
3. compare segment offset with page table length; if offset greater,

illegal reference
4. get page table base, add segment offset
5. get page table entry
6. use the frame number in it and the page offset to get physical

location
 This scheme is used when most of the page table is empty, which

happens when the address space is big and the programs use a
fraction of the space of memory.

• Paged Segmentation
 Here, the segments are paged. The segment table contains the

segment lengths and the page table base logical address
• logical address is (segment number, segment offset), but the

segment offset is really (page number, page offset), and entries in
the segment table are (page table base, page table length)

So:
1. get segment number, compare to segment table length; if number

greater, illegal reference
2. add STBR to segment number
3. get segment table entry
4. add page number to page table base address
5. get page table entry
6. use the frame number in it and the page offset to get physical

location

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 27

(s,d)

s

s

physical

memory

segment table

+STBR

>
yes

no

trap

STLR

PTBR

p

(p,o) +
p

page table

f (f,o)

d

CPU

 This is used when segment sizes are large and external fragmentation

is a problem, or finding free space takes a long time. As with paging,
note the last page of each segment is generally not full; on the
average, there is half a page of internal fragmentation per segment.
But there is no external fragmentation!

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 28

What Is Virtual Memory

Virtual memory allows the execution of processes not completely in

memory. Why is this good?
• programs often have code to handle unusual error conditions; in many

cases, this code may almost never be used;
• arrays and tables are often allocated more memory than needed;
• some options and features are seldom used and even if all are used,

they are seldom used all at once.
Some added benefits of not requiring the whole program to be in memory
are:
• programs are not constrained by the amount of available physical

memory;
• more users can run at the same time, increasing CPU utilization and

throughput, without increasing response or turnaround times;
• it takes less I/O to load or swap a process into memory, so each user

process seems to run faster
How can this be done? In several ways:

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 29

Overlays

For this technique, keep only the instructions and data needed at a given
time in memory; as they are needed, new instructions and data are loaded
into space occupied by instructions and data no longer needed.
Example: consider a two-pass assembler:

pass 1 8K
pass 2 10K
symbol table 14K
common routines 5K
total 37K

The system has 32K of memory available. So, define two overlays:
1. pass 1, symbol table, common routines; total, 27K
2. pass 2, symbol table, common routines; total, 29K

Add an overlay driver of 2K, and both overlays fit into memory
completely. Thus, you load overlay 1 into memory, run, and when you
finish jump to the overlay driver, which loads overlay 2 into memory and
invokes it.
This is an example of This is an example of dynamic loading, on which the
routine is not loaded until it is needed. It requires that routines be kept
on disk in a relocatable format. When the main program is loaded and
executed, and it calls a routine, the system:

(1) checks to see if the called routine is in memory
(2) if not, that routine is loaded and the relevant tables are

updated
(3) the called routine is executed.

Advantage: only routines that are used get loaded.
Note that the operating system need provide no special support;
however, this means:
Problem: the user must design and program an overlay structure or
loading; since the program is large, this may get confusing. It would be
far preferable to have automatic mechanisms to do this.
 This mechanism is called …

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 30

Implementations of Virtual Memory

It describes a set of techniques for allowing execution of a program

not in memory. One such technique is:
Demand Paging

Programs reside on a backing store (swapping device). Only those
pages being used are brought in; a page is never brought in unless it is
referenced.
• this decreases swap time and the amount of physical memory needed;
• it also increases the degree of multiprogramming.

To indicate a page is not resident (in memory), set the invalid bit for
page table entries referring to pages not in memory. When the process
references such a page, the process page faults.

Pure demand paging means the process starts executing with no
pages in memory. The first action (getting the first instruction) causes a
page fault; the appropriate page is loaded, etc. ….
Hardware Support for demand paging. Needed are:
• a page table which can have entries marked invalid via a valid/invalid

bit or some special value of protection bits; and
• a backing store for pages not in memory.
Performance Issues
 Let ma be the memory access time (typically, 500ns - 2µs), and p the
probability of a page fault. Then the effective memory access time emat
is:

ma(1–p) + p(page_fault_service_time)
What happens on a page fault?

 1. There is a trap to the operating system.
 2. User registers and program state are saved.
 3. The operating system determines that the trap was a page

fault trap.
 4. The operating system checks that the page reference was

legal, and if so determines the location of the page on the
backing store.

These first 4 steps (servicing the page fault trap) take 100-
1000µs.
 5. The operating system initiates a read of the page from the

backing store to a free frame:
a. the request waits in the appropriate queue for the device;
b. it waits for the device seek and rotational latencies;
c. the page transfer begins.

 6. While waiting for the I/O to complete, the operating system
reallocates the CPU to another process.

 7. When the I/O completes, an interrupt occurs.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 31

 8. Again, the system saves registers and program state of the
currently running process.

 9. The operating system determines the interrupt was from the
backing store.

 10. It updates the page table (and other tables) to show the
page is now in memory.

These steps (swapping in the page) take approximately 9ms.
 11. The operating system now reallocates the CPU.
 12. The appropriate process is restarted.
These first 4 steps (servicing the page fault trap) take 100-
1000µs.

Given an average page fault service time of 10ms, and a memory access
of 1µs, the effective memory access time is:

effective access time = (1 - p) 1µs + p10ms
 = (1 - p) + 10000 µs
 = (1 + 9999p) µs
which means the effective access time is proportional to the page fault

probability. Hence, if p = 1
1000 , then

emat = (1 + 9999
1000)µs = 10999

1000 µs ≈ 11µs
that is, memory accesses are roughly 11 times slower due to demand
paging. To get less than 10% degradation, we need:
1.1 ≥ 1 + 9999p
 Want less than 10% degradation? You need:

11
10 > 1 + 9999p ⇒ p < 1

100000
or, in words, less than 1 memory access out of every 100,000 can page
fault.

Page Replacement
 Throughout, once a page has been loaded, it is kept in memory. But
this may result in overallocating memory:

• When executing a program, a page fault occurs.
• The hardware traps to the operating system, which sees it is page

fault.
• The operating system determines where on backing store the

required page is.
• But then the operating system cannot find a free frame!!!

It can do three things at this point:
1. Terminate the program
 problem: the whole idea behind demand paging is that it should be

hidden from the user.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 32

2. Swap out the process temporarily; more about this later.
3. Replace some pages in memory. If there are no free frames, find some

frame not in use and free it (by writing its contents to the backing
store and changing all relevant tables).

So now the page fault service routine becomes:
1. Locate the desired page on the backing store.
2. Look for a free frame:

• if one is found, use it
• if not, use a page replacement algorithm to select a victim

frame; write the page in this frame (called the victim
page) to the backing store, and update the tables to show
this

3. Read in the new page, and update the appropriate tables
4. Restart the user process

If there are no free frames, two page transfers (one out and one in) are
required. To cut down on this overhead, associate with each page
(frame) a dirty bit in the hardware; whenever any word or byte is written
to the page, this dirty bit is set. When a page is chosen as a victim, if its
dirty bit is set, write the page out; otherwise, don't bother.

Stepping Back for a Moment

Now, virtual memory has become a separation of user logical memory
from physical memory. The size of a virtual memory is no longer
constrained by the size of the computer's physical memory; pages can be
moved in and out as needed.

Of course, virtual memory can also be implemented using segments.

Problems: The system needs both a page replacement algorithm and a
frame allocation algorithm.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 33

Page Replacement Algorithms

A reference string is this string of memory references.

example: consider the string of memory references on a system with 100-
word pages:

100, 432, 101, 612, 102, 103, 104, 101, 611, 102, 103
This produces the reference string

1 4 1 6 1 6 1

Algorithms
First In First Out (FIFO)
This algorithm selects the oldest page for removal.

Optimal (OPT, MIN)
This algorithm selects the page that won't be used for the longest period
of time.

Least Recently Used (LRU)
Associate with each page the time of last use; then this algorithm
replaces the page not used for the longest period of time.

Stack Algorithms
These are a generalization of the LRU algorithm; a stack algorithm is one
for which the set of pages in memory for n frames is a subset of set of
pages which would be in memory for n + 1 frames. LRU is a stack
algorithm, as is OPT.

LRU is too expensive to implement without hardware assistance -
either using a stack or counters which are updated for every reference.
Interrupts would have to occur at each reference, which would increase
effective memory access time by a factor of 10 (at least). So …
approximate it using other stack algorithms!

In all of these, whenever a page is referenced (read or write), the
hardware sets a bit (called the used bit or reference bit) associated with
each page. This is used to determine which pages have been used and
which have not been used.
example: Associate with each page a set of n bits (called an aging
register). The high-order bit of this register is the use bit. At regular
intervals, shift the register right one bit (losing the low-order bit). Hence
each page has the last n use bits as a history. To replace the page
referenced furthest in the past, replace the page with the lowest number
in its associated aging register.

Clock, Second Chance

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 34

Whenever a page is referenced, the use bit is set. When a page must
be replaced, the algorithm begins with the page frame pointed to. If the
frame's use bit is set, it is cleared and the pointer advanced. If not, the
page in that frame is replaced. (If the pages are kept on a circular list, it's
“clock;” otherwise, it's “second chance.”)

Least Frequently Used (LFU)
A count of the number of references to a page is kept; the page with the
smallest count is chosen to be the victim.

Most Frequently Used (MFU)
This is just like LFU, but selects as victim the page with the largest count,
on the theory that the page with the smallest count has just been
brought in and is waiting to be used.

Not Used Recently (NUR, NRU)
This essentially uses the second chance algorithm based on the use bits
rather than the time the page is brought in. Consider the use bit and the
dirty bit (which is set whenever the page is written to) as forming 4
classes (the first number is the use bit, the second the dirty bit). The
classes are ordered as follows:

(0,0) → class 0; (0,1) → class 1; (1,0) → class 2; (1,1) → class 3
Pick a victim from the lowest numbered class. When a page is brought in,
all use bits are cleared.
example: see handout

Second-Chance Cyclic
This is like NUR but without the randomness. Use the same classes, but
instead of selecting randomly, advance a pointer as in the clock algorithm.
The class of the page the pointer is pointing to tells what to do:

class after
(1,1) (0,1)
(1,0) (0,0)
(0,1) (0,0)*
(0,0) select this page

example: see handout

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 35

Ad Hoc Techniques for Improving Performance

The system can keep a pool of free frames. When a process needs a
page, the page in read into a free frame in the pool before the victim is
written out, and when the victim is written out its frame is added to the
free frame pool.
• The process need not wait for the victim to be written out;
• The system can do I/O periodically rather than on each page

replacement (for example, when the number of free frames falls below
some threshold); in this case, if a page is needed but has not yet been
written out, its frame can just be removed from the free frame pool
and reused (that is, no I/O needed). The VAX/VMS operating system
uses this technique to improve FIFO by reducing I/O.

• If the paging device is idle, find pages with the dirty bit set, write them
out, and then clear the dirty bit.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 36

Page Allocation Algorithms

 Several strategies are possible:
• Use all frames before replacing pages;
• Keep some free frames reserved so that when a page fault occurs, a

page can be brought in while the victim is being chosen.
Problem with demand paging and multiprogramming: How does the
system allocate frames to a process?
• The most frames a process can get is all of them!
• The least frames a process can get is defined by the architecture:
 As a page fault causes the current instruction to restart, this gives a

bound on the maximum number of pages a single instruction can
reference

 example: PDP-8: 1 memory address/instruction, so the minimum
number of frames per process is:
• 1 frame for the instruction
• 1 frame for the address, which may be an indirect address

(pointer), so …
• 1 frame for the value pointed to by an indirect address
for at most 3 frames per instruction, and therefore at least 3 frames
per process.

 example: PDP-11: 2 memory addresses/instruction, as an instruction
may be longer than 1 word; so the minimum number of frames per
process is:
• 2 frames for the instruction
• 1 frame per address, which may be an indirect address (pointer), so

…
• 1 frame for the value pointed to by an indirect address
for at most 6 frames per instruction, and therefore at least 6 frames
per process.
example: Data General Nova 3: this allowed multiple levels of
indirection. Each16 bit word has 15 bit addresses and 1 indirect bit,
so the indirection could go on forever! The engineers modified the
architecture to allow at most 16 levels of indirection, so each address
requires at most 17 frames.

Global or Local Frame Allocation
• Global allocation: frames for replacement pages are taken from the set

of all frames grab replacement from set of all frame
Problems:
(1) The program does not control its own paging behavior
(2) The program may perform very differently due to external factors.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 37

• Local allocation: frames for replacement pages are taken from that
process' set of frames
⇒ the number of frames allocated to a process does not change
Equal Allocation: if there are m frames and n processes, each process

gets mn frames
Proportional Allocation: Suppose the size of a process' virtual memory

is si, and let S be the sum of all si. Then process pi gets
sim
S frames.

example: The system has 2 processes, one with a virtual memory of
10K and the other with 127K, and there are 62 free frames.
• Under equal allocation, each process gets 31 frames
• Under proportional allocation, the first gets

!

10 " 62

137
= 5, and the

second

!

127 " 62

137
= 57 frames.

Note that if the degree of multiprogramming goes up, each process
losses frames, but if it drops, each process gets more frames
Problem: all processes aretreated equal regardless of priority
Solutions:
(1) use a proportional allocation scheme based on priorities or a

combination of sizes and priorities
(2) allow a high priority process to take frames from a low priority

process and use them for replacement.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 38

Thrashing

Thrashing occurs when a process spends more time paging than

executing. A prime cause is that the set of pages needed to avoid
faulting for every page will not fit into the process' set of page frames.

Suppose the operating system monitors CPU utilization and brings in a
process if the degree of multiprogramming is too low. One scenario, on a
system using a global page replacement algorithm, is:
(1) a process needs more frames, and gets them from other processes;
(2) those other processes begin page faulting, and queueing for the

paging device;
(3) the ready queue empties;
(4) CPU utilization drops;
(5) more processes are brought in, and they grab pages from executing

processes;
(6) more processes queue up for the paging device;
…
The throughout plunges. Processes pages, but do no work, and the
effective memory access time increases.

degree of multiprogramming

C
P
U

 u
ti

liz
a
ti

o
n

thrashing

A local replacement algorithm will limit the effect of page faulting to

one process, but increased contention for the paging device increases
effective memory access time for all processes.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 39

Principle of locality

As a program runs, it moves from locality to locality
That is, references tend to be grouped.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 40

Working Set Model

Let the current time be t. Then

W(t, τ) = { pages referenced in last τ time units }
where τ is the window size, or the size of the working set (a tuneable
parameter).
example: see handout.

This ties process management to memory management via the
Working Set Principle:

A process may execute only if its working set is
resident in main memory. A page may not be
removed from main memory if it is in the working
set of an executing process.

Properties:
(1) the size of a working set can vary:

1 < |W(t, τ)| < min(τ, number of pages in process)
(2) W(t, τ) ⊆ W(t, τ+1), so working set is a stack algorithm.

Typically, the working set of a process undergoes periods of fairly
consistent size alternating with periods of larger size (as the process
moves to a new locality):

W
S
 s

iz
e

timestable stablestable

t r t r t r t r

changes in Working Set size over time

tr = period of transition from one locality to another

stable = period in one locality

The stable periods account for usually 98% of the process time; the
remaining 2% has half of all page faults. During transitions, the fault
rates are 100-1000 times more than in the stable range.

Ideally, τ is large enough so the working set contains all pages being
frequently accessed, and small enough so that it contains only those
pages. A typical value is τ = 0.5 sec.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 41

Implementation: It requires an accurate virtual clock. Whenever a page is
accessed, the current time according to that clock is recorded in the page
table. The working set contains all pages whose access time is within t of
the present time.
Problem: Too expensive.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 42

Working Set Approximations

All try to approximate membership in the working set by examining

what pages have been referenced since the last page fault or last few
faults. The algorithms differ in the way they examine the pages in the
system to decide how to do this approximation.

WSCLOCK

With this algorithm, use a clock type scan through the frame table. A
page fault in any process starts the scan.
• use bit set:
 Clear it and store the virtual time of the process owning the page in

that frame in a referenced time field; this is an approximation of when
the page was last referenced.

• use bit clear:
Compare current virtual time of the process owning the page in that
frame in a referenced time field; if the difference is more than t, the
page is not in the process' current working set and can be removed.

If no page can be removed, swap out a process

Working Set Size (WSS)

The memory manager maintains estimates of the sizes of working sets
rather than the number of pages in it. When a process is brought in by
the medium (or long)-term scheduler, the working set size is estimated by
counting the number of pages recently accessed (for example, by looking
at the use bits in the process page table) and the process does not go
onto the ready list until that many page frames are available.

Page Fault Frequency (PFF)

This bases decisions about membership in the working set on the
frequency of page faulting. In effect, it computes the working set at each
page fault, rather than continuously. Define a (tunable) parameter p. At
each page fault, compare the time since the previous page fault to p:
• if this time is smaller than p, the page is added to the working set;
• if this time is larger than p, remove from the working set all pages not

referenced since the previous page fault.
Implementation: on each page fault, clear all use bits.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 43

Other Considerations for Paging

Prepaging

When a process is started (or restarted) try to bring into memory at
one time all the pages that will be needed. This will reduce initial faulting
considerably.
example: for Working Set, keep a list of pages in the current working set
with each swapped-out process
Cost tradeoff: some prepaged pages may not be used. Does this cost
more than servicing the interrupts caused by faulting?

I/O interlock

If doing DMA from a device to a buffer in the user's memory, a page
may need to be locked into memory; such a page cannot be swapped out!
Solutions:
(a) Do all I/O to system memory and then copy to the user buffer.
(b) Associate a lock bit with each page; if set, that page stays in

memory. This bit can also be used to prevent replacement of pages
belonging to a process just swapped in but not yet executed.

 example: when a process is brought in (eg. after a page fault) and is
on the ready queue, a higher priority process which currently has the
CPU may page fault, and take a frame from the newly-arrived lower
priority process (those are not used in a while, and are not dirty).
But if those have the lock bit set, then they will not be selected as
victims.

Page Size

If a machine exists, you rarely have a choice of page sizes, but if you
are designing a new machine, you want to pick a good page size.
Considerations:
• the size of the page table is inversely proportional to the page size.
 example: if the size of virtual memory is 222 words, the system can

have 214 pages of 28 words or 210 pages of 212 words.
 As each active process needs a copy of the page table, this

consideration means large page sizes are better.
• memory utilization is better with smaller page sizes as there is less

internal fragmentation.
• the time to read/write a page is less with larger page sizes as there is

only one seek (or rotational) latency involved. As this dominates
transfer time, you want to make the page size big, so the system only
does one wait for the device to be positioned.

• reducing total I/O means we want the page size to match the size of
the program's (typical) locality, so we only have to bring in the

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 44

memory actually used; hence a smaller page size means less is
transferred.

• reducing the rate of page faults means that there is less time servicing
interrupts, doing I/O related to paging, etc., and a large page size cuts
this down.

Some systems allow more than one page size!
example: GE 645 allows pages of either 64 or 1024 words; the IBM 370
allows page sizes of 2048 or 4096 words.

Program Structure
Taking paging into account can improve program performance, especially
when arrays are involved. Say page size is 1024:

 for (j = 0; j < 1024; j++)
 for (i = 0; i < 1024; i++)
 array[i][j] = 0;

does array[0][0]…array[1][0]…
C stores arrays by rows, so there will be one row per page and, in the
worst case, 10242 = 1048576 page faults. Writing

array[j][i] = 0
reduces this to 1024 page faults in the worst case.

Data Structures

Some (eg., stack) have good locality and are well suited for paging.
Others (eg. a hash table) do not have good locality.

Arrangement of Routines During Loading

Routines which call each other many times might be loaded on the
same page to reduce page faulting.

ECS 150 (Operating Systems) Memory Management

Spring Quarter 2008 45

Storage as a Hierarchy

Magnetic Tape Library

Disk Drives

Backing Store

Main Memory

Cache

Registers

Throughout, often-referenced

information is moved into a

quicker (lower) level of the

hierarchy.

Atlas used core memory as

a cache, and paging was used

to implement cache

management.

This also leads to the notion of automatic archiving.

