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Goal 

CPU gains related to scheduling require that many processes be in 
memory; so, memory must be shared.  We shall discuss memory 
management schemes; the selection of which one to use depends 
especially on the hardware available. 
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How Programs Interact With Memory 
 

 When a program is written and then run, the following steps take 
place: 

compile, assemble  to object module 
linker to load module 
loader to in-core image 
execute 

Addresses in each of these are: 
SOURCE symbolic 
compile bind to relocatable address, i.e., 

bigmod + 4 
loader (usually) bind relocatable to 

closest address 
A program executes using absolute (also called physical) addresses; 
here's what the instruction execution cycle looks like: 
 fetch instruction at address A 
 decode it 
  (poss) fetch operands at addresses B1, ..., Bn 
 execute instructions 
  (poss) store results at addresses D1, ..., Dn 
So the memory unit sees just a stream of addresses, and is never told 
how this stream is generated.  We are just interested in this sequence. 



ECS 150 (Operating Systems)  Memory Management 

Spring Quarter 2008  3 

Memory Management and Hardware 
 
Bare Machine 

This type has no memory management and no operating system 
software. 
simple: no special hardware 
 no services 
problems: operating system has no control over interrupts 
 no monitor to process system calls or errors 
 no job sequencing 
This type of machine is used in dedicated systems when simplicity and 
flexibility are required and users are willing to program support 
routines. 

 
Resident Monitor 

In this type of system, there are 2 sections of memory:  one for the 
monitor, the other for the user.  The monitor is usually put wherever 
more convenient; as the interrupt vectors are usually in low memory, 
so is the monitor. 

In such a system, the hardware must protect the monitor code 
from the user; this is often done with a fence address  as follows: 

CPU
address

address ! fence?

fence address

yes

trap

no
memory

 
Note that every reference must be checked, which slows memory 
accesses down.  A good hardware design can reduce effective access 
time by overlapping the comparison with other activities. 
The comparison is not done when running in monitor mode. 
 
Specifying fence address 
• build the fence address into the hardware as a fixed constant; this 

raises some questions, such as: 
• how is that constant selected? 
• what happens if the monitor changes size? 

• use a fence register to hold the fence address; in this case: 
• the register is always used in the address bounds check 
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• the fence register may be loaded in monitor mode only, using a 
special, privileged instruction 
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Relocation 
 
 Typically, the address space of a computer starts at 0, but as the 
monitor is in low memory, the address space of a user process starts at 
the first address after the fence address.  So when are program addresses 
bound to absolute addresses? 
• at compile time?  if the fence address is known, this is possible. 
 problem: if the fence address changes, the code must be recompiled. 
• at load time?  In this case, the compiler generates relocatable code. 
 problem: if the fence address changes, the code must be reloaded 
Further, both of these assume the fence address is static during 
execution; if it changes, then the program could produce invalid addresses 
midway through execution.  This means that under these schemes the 
fence address can be changed only when no user processes are running.  
This becomes a big problem when the monitor uses transient monitor 
code.  This involves little-used routines within the monitor.  To keep the 
monitor small, the transient monitor routines are not loaded until needed; 
when they are needed, the monitor size increases, so the fence address 
changes; when the routine is no longer needed, it is deleted and the fence 
address changes again.  Hence allowing the monitor to change size 
dynamically is good, and neither of those alternatives allow it. 

There are two ways around this: 
(1)  Load the user program in high memory down towards the fence 

register; either the user or the monitor process can use the space 
between them.  This technique was used in the PDP-11's early 
operating systems: 

low high

resident

monitor

user

process

directions of growth  
(2)  Bind the process addresses at execution time; here, the fence 

register (called a relocation or base register)is added to every 
address reference, so if the fence register contained x, address 205 
would really refer to absolute address x+205; this is called dynamic 
relocation: 
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CPU
logical

address

base

register

memory
absolute

address
 

      The CDC 6600s use this scheme. 
 Advantages: 

• The user process never sees the absolute (physical) addresses. 
• If the base register is changed, the user memory need only be 

moved to the correct locations relative to the new fence address. 
 With this scheme, the user process sees the logical addresses as 0, 
..., max , but the physical addresses are really b, …, b+max, where b is 
the fnece address (contents of base register).  Note that all 
information passed to the operating system for use as memory 
addresses (such as buffers for I/O) must be relocated.] 
This concept of the logical address space being mapped to a separate 
physical address space is central to proper memory management! 

(3)  Swapping 
 This uses the idea of a (single-user) resident monitor, but for many 

processes by keeping only one process resident and putting all 
others on backing store (called the swap device).  The first idea is to 
use this when the system does not have enough memory for more 
than one user process at a time. 
• done in CTSS and the SDC Q-32 resident monitors, which make 

the rest of memory available to current users; it is still used when 
there is not enough memory for all jobs 

 This was later generalized to many resident processes. 
• Called swapping; processes resident in memory are swapped. 
• The system needs a backing store which is big enough to hold 

copies of all memory images for all users and provides direct 
access to them. 

 Executing a process now looks like this: 
• CPU calls dispatcher 
• dispatcher looks; if process in memory, runs it 
• if not, swap out resident process 
• swap in desired process 
• load registers as normal 
• run! 

 Swap Time 
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 This greatly increases the time needed to switch context, so we want 
execution time per process to be long relative to swap time.  
Assume: 
• the process occupies 20,000 words of memory; 
• the backing store is a fixed head drum with 10 ms rotational 

latency; and 
• the transfer rate is 363,000 words/sec.  

 This means that the time to move a process into or out of memory is 

10ms + 20000
363000   sec = 10 ms + 55.1 ms = 65.1 ms 

 so the time needed to swap two processes (one out, the other one 
in) is approximately 130ms for two 20,000 word processes. 

Optimizations   
• Swaps only part of the memory used by a process rather than all of 

the memory.  In this case, processes must keep the monitor 
informed of changes in memory requirements (that is, request 
memory and release it). 

• Speed up the backing store's performance.  This is often done by 
using memory chips for swapping rather than a drum or disk 
(although the interface is usually that of a drum or disk, for 
transparency reasons) 
• IBM's large core storage (LCS) system has an access time of 8 

ms, and a transfer rate of 400,000 word/sec, so to swap one 
20,000 word process takes 

 8ms + 20000
400000   sec = 8 ms + 50 ms = 58 ms 

 or 116 ms to swap one 20,000 word process out and another 
in. 

• CDC's extended core storage (ECS) system has an access time 
of 3 ms and a transfer rate of 107 words/sec, so to swap one 
20,000 word process takes 

 3ms + 20000
10000000   sec = 3 ms + 2 ms = 5 ms 

 or 10 ms to swap one 20,000 word process out and another in. 
• overlap swapping with process execution: 
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fence

address

monitor

swap-out

buffer

swap-in

buffer

user

•!The memory in the swap-out buffer

!!is being written out;

•!The memory in the swap-in buffer

!!is being read in; and

•!The memory in the user area is

!!being used by the executing

!!process.

 
When processes are to be swapped: 
(1) move the contents of user area to the swap-out buffer; 
(2) move the contents of swap-in buffers to the user area; 
(3) begin I/O to write swap-out buffer to backing store; 
(4) begin I/O to read next process being swapped in to swap-in 

buffer; and 
(5) execute user process 
Problem:  If a high speed swapping device is used, there may not be 
any spare cycles to move memory associated with processes to the 
buffers; e.g.,  ECS, in which the transfer rate is equal to the rate at 
which main memory can be accessed. 
 
Note that only completely idle processes can be swapped.  For 
example, if a process is blocked on I/O and the I/O operations will 
access the process buffers directly, that process cannot be swapped.  
Two ways to handle this situation: 
• never swap a process with I/O pending; or 
• have all I/O operations move data into or out of operating systems 

buffers only (and then transfer the moved data to or from disk at 
leisure, such as when the program is swapped in again) 
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Simple Memory Management Schemes 
 
As swapping is so expensive, we'd like to avoid it.  This leads to the 

idea of multiple partitions of memory, where multiple processes are 
stored in memory simultaneously, each in a different location.  The 
question is how memory is allocated so processes need not be swapped 
out. 

In general, memory is divided into partitions or regions, each with one 
program. 
• the degree of multiprogramming is bounded by the number of 

partitions 
• when a partition is free, put a job on the ready queue into the partition 
Note the memory associated with each job is contiguous.  Two schemes 
which do this are: 
• multiple contiguous fixed partition allocation (MFT) 
• multiple contiguous variable partition allocation (MVT) 
These require hardware to prevent access outside assigned memory 
regions.  One of two mechanisms is typically used: 
• bounds registers  keep track of the uppermost and lowermost physical 

addresses 
• base and limit registers  keep track of the uppermost logical address 

and the smallest physical address (used in the CDC 6600 and its 
descendants) 

 
Fixed Regions (MFT) 

Here the regions do not change size: 

monitor

small

medium

large

10K

4K

6K

12K

32K

 
 
MFT Job Scheduling 

When a job enters the system, it is put onto the job queue; the long-
term scheduler takes both memory requirements and available partitions 
into account.  Then a job is allocated space and moved into the partition, 
at which point it can go onto the ready queue; it competes for CPU time 
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until it ends, at which point the memory partition is freed and a new job is 
brought in. 

 
Allocation of Memory 

All these require some classification of jobs based on memory needs as 
they enter the system.  Either the user must specify a maximum amount 
of memory or the system can try to determine it automatically. 
(1) each memory partition has its own queue, and the job goes into the 

smallest region that will hold it. 
 Example: 3K job and 5K job go into the queues associated with the 

small and medium partitions, respectively. 
(2) all jobs go into 1 queue, and when the scheduler selects the next job 

to run, it waits for the partition to become available. 
 Example: if a 3K job came first in the queue followed by a 5K job, and 

the 6K partition became available, no job would be placed into it, 
because the next job in the queue is to go in the small partition. 

(3) all jobs go into 1 queue, but when the scheduler is to bring in a job, it 
runs down the queue and picks the next job that would fit into an 
appropriate free partition 

 Example: if a 3K job came first in the queue followed by a 5K job, and 
the 6K partition became available, the 5K job would be put into the 
6K partition even though the 3K job precedes it in the queue.  (Note: 
if the 12K partition became free instead of the 6K partition, the 5K 
job sits in the queue as its associated partition is still occupied.) 
• the scheduler selects the next job that fits into its free partition 

even if higher priority jobs are waiting ahead of it but 
are too large to run.  

(4) all jobs go into 1 queue, but when the scheduler is to bring in a job, it 
runs down the queue and picks the next job that would fit into any 
free partition 

 Example: if a 5K job were in the queue, the small and medium 
partitions were occupied, and the large partition became available, 
the 5K job would be put into the 12K partition. 

(5) Now add swapping and give each of several jobs fitting into one 
partition some time. 

 Example: We have 3 partitions; schedule all jobs associated with one 
partition using round robin.  It works like this:  
• round robin quantum expires; 
• memory manager starts swapping out the job currently in the 

partition and swapping in another job associated with that 
partition; 

• the CPU scheduler gives a time slice to a job in another partition 
… 
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For this to work the memory manager must be able to swap jobs fast 
enough so there are always jobs in memory, ready to execute, when 
the CPU is rescheduled. 

(6) When a high priority job comes in and a lower priority one is using 
the appropriate partition (or lower priority jobs are using all available 
partitions), swap out a lower priority job for the higher priority one 
demanding service. 
• when the higher priority job is done, swap the lower priority job 

back in and continue 
• this technique is called roll-out/roll-in 
Normally, swapped jobs return to same partition, but whether this 
must be done is dictated by the partition allocation policy and the 
relocation method: 
• with static relocation, the job must return to its original partition. 
• with dynamic relocation, the job need not return to its original 

partition. 
 

Problems:  suppose a job needs more memory, or tries to allocate more 
memory,  than the partition has.  MFT gives the job a fixed amount of 
memory; the job may use less, but not more.  So what can happen if it 
requests more? 
(1) terminate the job 
(2) return control to the job with an error indication that the request 

cannot be satisfied 
(3) swap out the job and wait for a large enough partition to become 

available; this is viable only if relocation is dynamic. 
Another problem: suppose your system has 120K of memory available, 

and you run 20K jobs all day, except for one 80K job which runs 
once a day.  You'll need an 80K partition to run that job, which 
means during most of the day you'll be wasting 60K (except when 
the 80K job is running). 

 
Variable Regions (MVT) 

This scheme allows partition size to vary dynamically to solve the 
second problem above.  The operating system keeps track of what parts 
of memory are allocated and what parts are free (the holes) using bit 
maps or linked lists (or some other appropriate structure). 
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queue

(1)!60K

(2)100K

(3)!30K

(4)!70K

(5)!50K

mon.
40

(1 )

(2 )

(3 )

100

200

230

256

mon.
40

256

(1)

in
(2)

in

(3)

in

mon.
40

(1 )

(4 )

(3 )

100

200

230

256

170

(2)

done

(4)

in

mon.
40

(5 )

(4 )

(3 )

100

200

230

256

170

(1)

done

(5)

in

90

Note there are set of various-sized holes throughout memory; if the hole 
is too big for the next job, the hole is split and the unused portion is 
returned to the set of holes.  When the job ends, thge memory it was 
using is returned to the set of holes and is combined with adjacent holes.  
This all requires some sort of allocation scheme. 
 
Allocation Schemes 

The hardware support required is the same as for MFT (namely, bounds 
registers or base and limit registers); the difference is in the software. 

Memory is usually allocated in chunks to avoid having to keep track of 
very small holes 

The more common schemes for placing a job in memory are: 
(1) best-fit  lists the holes in order of increasing size.  A job is put into 

the smallest hole it fits. 
(2)  worst-fit lists the holes in order of decreasing size.  A job is put into 

the first hole in the list. 
(3)  first-fit list the holes in order of increasing base address.   A job is 

put into the first hole it fits. 
(4) next-fit is like first-fit, except the search for a hole the job fits begins 

where the last one left off. 
(5)  buddy system deals with memory in sizes of 2i  for i < k.  There is a 

separate list for each size of hole.  Put the job into a hole of the 
closest power of 2; if it takes up under half, return the unused half to 
the free list. 

 Example:  You have a memory of 16K, and a 3K job comes in.  The 
nearest power of 2 is 4, so: 
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16K

8K

8K

8K

4K

4K
3K goes

here
 

 When done, the process reverses and blocks coalesce. 
Which works best?  The buddy system. 
 
Job Scheduling 

The scheduler has a list of available block sizes and a queue of jobs 
wanting memory.  The job scheduler orders jobs according to its 
scheduling algorithm, and then memory is allocated until there is not 
enough to allocate to the next job.  At that point, two things can be 
done: 
(1) skip to the next job in queue which can fit into the available memory 

hole; or 
(2) wait until enough memory becomes available for the next job to be 

run. 
Within a partition, MVT wastes little or no space (the wasting of space 
within a partition is called internal fragmentation), but between partitions 
it may waste lots of space (the wasting of space between partitions is 
called external fragmentation), 
no internal fragmentation; for example, in the earlier picture, job (5) could 
have been run simultaneously with (1), (3), and (4) were the two holes 
combined.  But they weren't, so we has 56K of external fragmentation.  
The placement algorithm chosen can have a serious impact on the amount 
of external fragmentation. 
 
Compaction 

This refers to moving the contents of memory about in order to 
combine holes.  For example, in the above, move job 3's memory to 170K 
would combine the holes at 170K-200K and 230K-256K into one hole at 
200K-256K. 
 This is not always possible, and dynamic relocation is a necessity; you 
just copy the contents of the memory being used by the process, and 
change the base register appropriately. 

Various schemes: 
(a) move all jobs to one end of memory; this can get expensive. 
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(b) move enough jobs to get the memory you need. 
Example: the CDC 6600 Scope Operating System kept 8 jobs in main 
memory at once, and used compaction on job termination to keep one 
hole at the bottom of main memory 
 
Swapping 

This can be useful too.  Rolling out a job releases memory; rolling in 
can cause problems if static relocation is used (as it must have the same 
partition as when rolled out).   Using dynamic relocation, though,  you can 
swap the job out and then swap it in at its new location. 
 
Reducing external fragmentation: 

This can be done in a number of ways: 
• reduce the average job size 
• break memory into two parts, one for instructions and one for data. 
 example: PDP-10 had 2 base/limit register pairs, the high order bit of 

each indicating which half of memory (high or low) the pair refers to.  
Instructions and read-only data go into high memory and variables go 
into low memory (by convention). 

 example: UNIVAC 1108 also had 2 base/limit register pairs, one for 
instructions and one for data.  The instruction pair is read-only, so 
users can share programs. 
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Memory Fragmentation 
 
Say a job needs w words of memory, and a partition has p words. 

Then: 
internal fragmentation exists when w - p > 0 (ie, memory internal to a 

 partition is not being used) 
external fragmentation exists when w – p < 0 (ie,  a partition is unused 

and available but is too small for any waiting job) 
example:  A system has 22K memory available; it is divided into 4 
partitions of sizes 4K, 4K, 4K, and 10K.  The queue has: 

7K job ←10K partition, leaving 3K of internal fragmentation 
3K job ←  4K partition, leaving 1K of internal fragmentation 
6K job waits 
two 4K partitions unused, leaving 8k of external fragmentation 

Total fragmentation: 8K+3K+1K=12K, which is over 50% of available 
memory! 
example:   A system has 22K memory available; it is divided into 3 
partitions of sizes 4K, 8K, and 10K.  The queue has: 

7K job ←   8K partition, leaving1K of internal fragmentation 
3K job ←   4K partition, leaving1K of internal fragmentation 
6K job ← 10K partition, leaving4K of internal fragmentation 
all partitions used, leaving 0K of external fragmentation 

Total fragmentation: 0K + 4K + 1K + 1K = 5K, which is 23% of available 
memory; much better. 
example:  partitions exactly match job sizes (in the above, the 22K 
memory is divided into partitions of 3K, 6K, 6K, and 7K). 
Total fragmentation: 0K (ie, none)! 
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Paging 
 
This solves the compaction problem of MVT by no longer requiring 
program memory to be contiguous.  The hardware splits each logical 
address into two parts; the high bits represent the page number and the 
low bits the page offset.  A page table has the base address (frame 
number) of each page in physical memory; this base added to the offset 
to get the associated physical address: 

page 0

page 1

page 2

page 3

logical

memory

4

2

0

5

page

table

page 2

page 1

page 0

page 3

physical

memory

 
 
A frame is the physical memory into which a page is put; a page is the 
unit of logical memory put into physical memory.  Both are of the same 
fixes size, which is defined by hardware, and is usually a power of 2; some 
examples: 

IBM 370 2048 or 4096 bytes/page 
XDS-940 2048 words/page 
NOVA 3/D 1024 words/page 
DEC-10 512 words/page 

If the page contains p words, the logical address l gives: 
page number = l div p 
page offset = l mod p 

If p is a power of 2, this can be done by examining the bit representation 
of l directly: 

page number = high order bits of p 
page offset = low order bits of p 

example: for a 16 word memory, and a page size of 2 words: 
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a b c d e f g h

0 2 4 6

logical

memory
2 6 4 5

page

table

0 1 2 3

a b

0 2 4 6 8 10 12 14

c de f g h
physical

memory
 

 
To obtain the physical address of word h (word number 7): 

page number = 7 div 2 = 3 
page offset = 7 mod 2 = 1 

The page table says page number 3 is mapped into frame number 5, so 
the base of the frame is 5 x page size = 10, and hence the physical 
address corresponding to logical word 7 is 10 + 1 or 11. 

This transformation is done for every logical address, so it is dynamic 
relocation. 

 
Job Scheduling 

Job size is given in pages; if a job has n pages, it needs n free frames.  
Note there is no external fragmentation!  But there will be internal 
fragmentation if the last page of the job uses less than 1 full page.  If the 
job size and page sizes are independent, the expected internal 
fragmentation is half a page per job; so to minimize internal 
fragmentation, use small page sizes 

Page table information is stored in the process' PCB; if the process is 
swapped back in, those values may have to be updated to reflect the new 
placement. 
 
Page table implementation 

If there is a small number of pages,  use registers for the page table.  
Loading and modifying their contents requires privileged instructions. 
examples: XDS-940 8 pages 2048 wds/page 8 registers 
 NOVA 3/D 32 pages 1024 wds/page 32 registers 
 SIGMA 7 256 pages 1024 wds/page 256 registers 
These can be built from very high speed logic, so paging address 
translation is efficient. 
If there is a large number of pages, then store the page table in memory, 
and use a Page Table Base Register (PTBR) to point to it. 
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CPU
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p

physical

memory

page table
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+PTBR
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physical address

p   o virtual

address

 
Changing page tables in a context switch simply requires changing 1 

register.  Accessing a physical address given the logical one requires 2 
memory accesses: 
• one to get the value in thr page table; 
• one to get the desired quantity. 
This slows memory accesses by a factor of 2. 
Optimization 

Use a cache (associative memory, look-aside memory, etc.).  These are 
registers storing a (key, value) pair and given the key, this hardware 
compares it with all the registers at once and returns the corresponding 
values.  Very fast but expensive! 

Caches contain only a few page table entries, so when used they are 
used like this: 

• get page number from logical address 
• check cache for corresponding frame number; if found, use the 

frame number (this may take as little as 0.1 the time of a 
memory access) 

• if not in cache, access memory to get frame number 
• add page offset to frame number 

The efficiency of caching is measured by the hit ratio (the percent of time 
the page number is found in the cache). 
example:  it takes 50ns to search the cache, and 750ns to access 
memory. 

in cache: mapped memory access takes 50ns + 750ns = 800ns 
not in cache mapped memory access takes 

50ns + 750ns + 750ns = 1500ns 
The effective memory access time is the average time needed for a 
memory reference: 
 hit ratio ¥ time needed to reference when page # in cache + 
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  (1 - hit ratio) ×  time needed to reference when not in cache 
example: in the above, an 80% hit ratio gives an effective memory access 
time of: 

0.8 ¥ 800ns + (1 - 0.8) × 1550ns = 956ns 

for a slowdown of 956-750
750    = 27.4%, and a hit ratio of 90% gives 

0.90 × 800ns + (1 - 0.9) 1550ns = 875ns 

for a slowdown of 875-750
750    = 16.7%). 

 
Sharing Pages 
Pages of re-entrant code (non-self modifying code, pure code) can be 
shared simply by putting appropriate entries in the page tables: 

C2

data 1

C1

data 2

memory

C1

C2

data

job 1

4

2

0

page

table

C1

C2

data

job 1

4

2

3

page

table

0

1

2

3

4

5

 
Here the total space used with sharing is 2 pages for C, 3 data pages 
The total space used without sharing is 2 pages for C, 3 data pages 
It is critical that shared code not be changed; so this must be enforced 
by the operating system, and not by the code itself. 
 
Protection 
 Associate protection bits with each page.  These bits are kept in the 
page table: 

• 1 bit for read/write or read only 
• 1 bit for valid/invalid 
• additional bits for other forms of protection 

With these the system can verify there is no writing to a read-only page 
while the physical address is being computed; if there is such writing, a 
trap to the operating system occurs. 
 
How il legal addresses get trapped 
 The operating system sets a bit for each page to allow/disallow 
access. 
example: 14-bit address space (0 … 16383), and the program uses 
addresses 0 … 10468.  The page size is 2048 words/page.  Hence 
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ppages 6 and 7 cannot be accessed.  As an example of internal 
fragmentation, note that words up to 12287 can be accessed because 
page 5 contains some part of the program, and you can't deny access to 
part of a page (it's all or nothing). 
 
A quick review of what we've done so far, but from another direction: 
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Views of Memory 
 
The user's program sees one contiguous memory space. 
The operating system sees the user's program scattered throughout 

physical memory . 
How can these be reconciled?  Because the address translation 

mechanism maps logical memory locations to physical locations, under the 
control of the operating system. 

This means: 
• the logical and physical addresses may be different 
 example: the XNS-940 has a logical address of 14 bits but a physical 

address of 16 bits;  the page number (3 bits) goes into the Page Table 
to select a 5 bit frame number.  Hence there is up to 4 times as much 
physical memory as one user can address 

This technique was used when 15/16 bit address spaces grew to 17/18 
bits as memory prices dropped: 
• the logical addresses were still 15/16/ bits; 
• the physical addresses became 17/18 bits. 
Users could not use more memory than before, however. 

The operating system is aware of what frames are allocated, what 
frames are available, the total number of frames, etc.; all this is stored in 
a global frame table , which is like a page table but has one entry per 
frame.  The entry indicates if the frame is allocated and if so, to which 
process. 
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Segmentation 
 
Now alter the user's view of memory slightly; instead of sets of equally-
sized blocks of instructions or data, think of a program as a collection of 
variable-sized segments: 

• 1 segment per subroutine or data structure 
• segments are of variable length 
• words (elements) identified by offsets into segment 

This form of memory management is called segmentation: 
• the logical address space is a collection of segments, 
• segments have a name and a length 
• addresses specify the name of the segment and the offset 

into that segment 
In paging, the hardware divides the logical address into a page number 
and offset; but for a segmented system, the operating system is given 
the segment number and the offset.  (It is often generated by the 
compiler, although the user may do it directly — the “.text n” construct 
in many assemblers says to put the following instructions into text 
segment n.) 

Segments are "named" by numbers because it's the easiest thing to 
do.  When a program is assembled, the assembler (or compiler) 
constructs segments appropriate for the program. 
example: In a C program, there might be: 

• a segment for global variables 
• a segment for the process call stack (in which arguments are 

stored, values returned, etc.) 
• segments for the code for each function 
• segments for local variables for each function 

The loader assigns segments numbers. 
Users refer to objects by a pair (segment name, offset) that must be 

mapped to a physical address. A Segment Table is used for this: 
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Implementation 
 Two techniques, as with paging: 
(1)  Keep the segment table in registers 
 example: the PDP-11/45 has 8 segment registers; this means 

addresses have a 3 bit segment number and a 13 bit offset. 
This allows up to 8 segments of 8192 bytes each. 
Each entry in the segment table stores a base, a length, and some 

access control bits 
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example:  the B5500 has 32 segments of1024 words, so segment 
numbers are 5 bits long and offsets are 10 bits.  
Problems:  too few segments, too little memory per segment 

(2)  Keep the segment table in memory 
 In this case, the Segment Table Base Register points to the base of 

the segment table, and the Segment Table Length Register contains 
the number of segments for the program.  Hence two steps to 
getting the physical address, given a logical address (s,d): 

(1) Check that s < contents of STLR; if not, bad address 
(2)  The location of the entry for the segment is STBR[s] 

 Now proceed as above. 
As with paging, there will be 2 memory references per logical address; 
using a cache to hold the most recently used segment table entries 
reduces the effective memory access time.  Using 8-16 such registers 
reduces the delay to 1.1 or 1.15 times that of unmapped memory access 
 
Protection 

Segments represent semantically defined portions of programs, so all 
entries in a segment are protected in the same way. For example, 
instruction segments are usually read-only, execute-only. 
 Typically associate protection bits with each segment table. 
 Each array can be put in its own segment, which allows automatic 
bounds checking! 
 
Sharing 

Segments can be shared: 
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This means you need keep just one copy of non-writeable segments in 
memory!  Also, you can share parts of program; for example, if 2 
FORTRAN programs call sqrt(x), stick sqrt(x) into its own segment and 
keep just one physical copy of it in memory. 
Some subtleties: 



ECS 150 (Operating Systems)  Memory Management 

Spring Quarter 2008  25 

• a conditional jump in a shared segment uses an address to transfer to; 
that address is a (segment number, offset) pair.  The segment number 
is that of the code segment.  So if it is shared, the shared code 
segment must have the same number in all sharing processes. 

 example:  Sqrt shared; in one process it's segment number 4, and in 
another, it's segment 17.  How can sqrt refer to itself?  It can't; so it 
must have a number common to all processes sharing it. 

solutions: 
• only share read-only data segments without any pointers (which 

contain addresses) 
• share code segments which refer to themselves indirectly 
 example: addresses specified as offsets from current PC 
 example: GE 645: addresses specified relative to a register containing 

the current segment number. 
 
Fragmentation 

Note that paging has a fixed size page length, but segmentation uses 
variable length blocks.  So finding room for the segments is the dynamic 
storage allocation problem; use the first-fit, best-fit, ... algorithms. 

The amount of external fragmentation depends on job scheduling and 
segment size; if there's no room, the system can: 

• wait until there is room; 
• skip this job and put in the next one that fits; 
• compact memory 
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Segmentation and Paging  
 
These can be combined in two ways: 
• Segmented paging  
 Segment the page table; that is, each entry in the segment table 

contains the base and length of (part of) the page table. 
• logical address is (page number, page offset), but the page number 

itself is (segment number, segment offset) 
 So: 

1. get segment number, add STBR 
2. get segment table entry 
3. compare segment offset with page table length; if offset greater, 

illegal reference 
4. get page table base, add segment offset 
5. get page table entry 
6. use the frame number in it and the page offset to get physical 

location 
 This scheme is used when most of the page table is empty, which 

happens when the address space is big and the programs use a 
fraction of the space of memory. 

• Paged Segmentation  
 Here, the segments are paged.  The segment table contains the 

segment lengths and the page table base logical address 
• logical address is (segment number, segment offset), but the 

segment offset is really (page number, page offset), and entries in 
the segment table are (page table base, page table length) 

So:  
1. get segment number, compare to segment table length; if number 

greater, illegal reference 
2. add STBR to segment number 
3. get segment table entry 
4. add page number to page table base address 
5. get page table entry 
6. use the frame number in it and the page offset to get physical 

location 
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 This is used when segment sizes are large and external fragmentation 

is a problem, or finding free space takes a long time.  As with paging, 
note the last page of each segment is generally not full; on the 
average, there is half a page of internal fragmentation per segment.  
But there is no external fragmentation! 
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What Is Virtual Memory 
 
Virtual memory allows the execution of processes not completely in 

memory.  Why is this good? 
• programs often have code to handle unusual error conditions; in many 

cases, this code may almost never be used; 
• arrays and tables are often allocated more memory than needed; 
• some options and features are seldom used and even if all are used, 

they are seldom used all at once. 
Some added benefits of not requiring the whole program to be in memory 
are: 
• programs are not constrained by the amount of available physical 

memory; 
• more users can run at the same time, increasing CPU utilization and 

throughput, without increasing response or turnaround times; 
• it takes less I/O to load or swap a process into memory, so each user 

process seems to run faster  
How can this be done?  In several ways: 
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Overlays 
  
For this technique, keep only the instructions and data needed at a given 
time in memory; as they are needed, new instructions and data are loaded 
into space occupied by instructions and data no longer needed. 
Example: consider a two-pass assembler: 

pass 1 8K 
pass 2 10K 
symbol table 14K 
common routines 5K 
total 37K 

The system has 32K of memory available.  So, define two overlays: 
1. pass 1, symbol table, common routines; total,  27K 
2. pass 2, symbol table, common routines; total,  29K 

Add an overlay driver of 2K, and both overlays fit into memory 
completely.  Thus, you load overlay 1 into memory, run, and when you 
finish jump to the overlay driver, which loads overlay 2 into memory and 
invokes it. 
This is an example of This is an example of dynamic loading, on which the 
routine is not loaded until it is needed.  It requires that routines be kept 
on disk in a relocatable format.  When the main program is loaded and 
executed, and it calls a routine, the system: 

(1) checks to see if the called routine is in memory 
(2) if not, that routine is loaded and the relevant tables are 

updated 
(3) the called routine is executed. 

Advantage:  only routines that are used get loaded. 
Note that the operating system need provide no special support; 
however, this means: 
Problem:  the user must design and program an overlay structure or 
loading; since the program is large, this may get confusing.  It would be 
far preferable to have automatic mechanisms to do this. 
 This mechanism is called … 
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Implementations of Virtual Memory 
 
It describes a set of techniques for allowing execution of a program 

not in memory.  One such technique is: 
Demand Paging 

Programs reside on a backing store (swapping device).  Only those 
pages being used are brought in; a page is never brought in unless it is 
referenced. 
• this decreases swap time and the amount of physical memory needed; 
• it also increases the degree of multiprogramming. 

To indicate a page is not resident (in memory), set the invalid bit for 
page table entries referring to pages not in memory.  When the process 
references such a page, the process page faults. 

Pure demand paging  means the process starts executing with no 
pages in memory.  The first action (getting the first instruction) causes a 
page fault; the appropriate page is loaded, etc. …. 
Hardware Support for demand paging.  Needed are: 
• a page table which can have entries marked invalid via a valid/invalid 

bit or some special value of protection bits; and 
• a backing store for pages not in memory. 
Performance Issues 
 Let ma be the memory access time (typically, 500ns - 2µs), and p the 
probability of a page fault.  Then the effective memory access time emat 
is: 

ma(1–p) + p(page_fault_service_time ) 
What happens on a page fault? 

 1. There is a trap to the operating system. 
 2. User registers and program state are saved. 
 3. The operating system determines that the trap was a page 

fault trap. 
 4. The operating system checks that the page reference was 

legal, and if so determines the location of the page on the 
backing store. 

These first 4 steps (servicing the page fault trap) take 100-
1000µs. 
  5.  The operating system initiates a read of the page from the 

backing store to a free frame: 
a.  the request waits in the appropriate queue for the device; 
b.  it waits for the device seek and rotational latencies; 
c.  the page transfer begins. 

 6. While waiting for the I/O to complete, the operating system 
reallocates the CPU to another process. 

 7. When the I/O completes, an interrupt occurs. 



ECS 150 (Operating Systems)  Memory Management 

Spring Quarter 2008  31 

 8.  Again, the system saves registers and program state of the 
currently running process. 

 9. The operating system determines the interrupt was from the 
backing store. 

 10. It updates the page table (and other tables) to show the 
page is now in memory. 

These steps (swapping in the page)  take approximately 9ms. 
 11. The operating system now reallocates the CPU. 
 12. The appropriate process is restarted. 
These first 4 steps (servicing the page fault trap)  take 100-
1000µs. 

Given an average page fault service time of 10ms, and a memory access 
of 1µs, the effective memory access time is: 

effective access time = (1 - p) 1µs + p10ms 
            = (1 - p) + 10000 µs 
 = (1 + 9999p) µs 
which means the effective access time is proportional to the page fault 

probability.  Hence, if p = 1
1000  , then 

emat = (1 + 9999
1000  )µs = 10999

1000   µs ≈ 11µs 
that is, memory accesses are roughly 11 times slower due to demand 
paging.  To get less than 10% degradation, we need: 
1.1 ≥ 1 + 9999p  
 Want less than 10% degradation?  You need: 

11
10   > 1 + 9999p ⇒ p < 1

100000   
or, in words, less than 1 memory access out of every 100,000 can page 
fault. 
 
Page Replacement 
 Throughout, once a page has been loaded, it is kept in memory.  But 
this may result in overallocating memory: 

• When executing a program, a page fault occurs.  
• The hardware traps to the operating system, which sees it is page 

fault. 
• The operating system determines where on backing store the 

required page is. 
• But then the operating system cannot find a free frame!!! 

It can do three things at this point: 
1. Terminate the program 
 problem: the whole idea behind demand paging is that it should be 

hidden from the user. 
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2. Swap out the process temporarily; more about this later. 
3. Replace some pages in memory.  If there are no free frames, find some 

frame not in use and free it (by writing its contents to the backing 
store and changing all relevant tables). 

So now the page fault service routine becomes: 
1. Locate the desired page on the backing store. 
2. Look for a free frame: 

• if one is found, use it 
• if not, use a page replacement algorithm to select a victim 

frame; write the page in this frame (called the victim 
page) to the backing store, and update the tables to show 
this 

3. Read in the new page, and update the appropriate tables 
4. Restart the user process 

If there are no free frames, two page transfers (one out and one in) are 
required.  To cut down on this overhead, associate with each page 
(frame) a dirty bit in the hardware; whenever any word or byte is written 
to the page, this dirty bit is set.  When a page is chosen as a victim, if its 
dirty bit is set, write the page out; otherwise, don't bother. 
 
Stepping Back for a Moment 

Now, virtual memory has become a separation of user logical memory 
from physical memory.  The size of a virtual memory is no longer 
constrained by the size of the computer's physical memory; pages can be 
moved in and out as needed. 

Of course, virtual memory can also be implemented using segments. 
      
Problems:  The system needs both a page replacement algorithm and a 
frame allocation algorithm. 
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Page Replacement Algorithms 
 
A reference string is this string of memory references. 

example: consider the string of memory references on a system with 100-
word pages: 

100, 432, 101, 612, 102, 103, 104, 101, 611, 102, 103 
This produces the reference string 

1 4 1 6 1 6 1 
 
Algorithms 
First In First Out (FIFO) 
This algorithm selects the oldest page for removal. 
 
Optimal (OPT, MIN) 
This algorithm selects the page that won't be used for the longest period 
of time. 
 
Least Recently Used (LRU) 
Associate with each page the time of last use; then this algorithm 
replaces the page not used for the longest period of time. 
 
Stack Algorithms 
These are a generalization of the LRU algorithm; a stack algorithm is one 
for which the set of pages in memory for n frames is a subset of set of 
pages which would be in memory for n + 1 frames.  LRU is a stack 
algorithm, as is OPT. 

LRU is too expensive to implement without hardware assistance - 
either using a stack or counters which are updated for every reference.  
Interrupts would have to occur at each reference, which would increase 
effective memory access time by a factor of 10 (at least).  So … 
approximate it using other stack algorithms! 

In all of these, whenever a page is referenced (read or write), the 
hardware sets a bit (called the used bit or reference bit) associated with 
each page. This is used to determine which pages have been used and 
which have not been used. 
example:  Associate with each page a set of n bits (called an aging 
register).  The high-order bit of this register is the use bit.  At regular 
intervals, shift the register right one bit (losing the low-order bit). Hence 
each page has the last n use bits as a history.  To replace the page 
referenced furthest in the past, replace the page with the lowest number 
in its associated aging register. 
 
Clock, Second Chance 
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Whenever a page is referenced, the use bit is set.  When a page must 
be replaced, the algorithm begins with the page frame pointed to.  If the 
frame's use bit is set, it is cleared and the pointer advanced.  If not, the 
page in that frame is replaced.  (If the pages are kept on a circular list, it's 
“clock;” otherwise, it's “second chance.”) 
 
Least Frequently Used (LFU) 
A count of the number of references to a page is kept; the page with the 
smallest count is chosen to be the victim. 
 
Most Frequently Used (MFU) 
This is just like LFU, but selects as victim the page with the largest count, 
on the theory that the page with the smallest count has just been 
brought in and is waiting to be used. 
 
Not Used Recently (NUR, NRU) 
This essentially uses the second chance algorithm based on the use bits 
rather than the time the page is brought in.  Consider the use bit and the 
dirty bit (which is set whenever the page is written to) as forming 4 
classes (the first number is the use bit, the second the dirty bit).  The 
classes are ordered as follows: 

(0,0) → class 0; (0,1) → class 1; (1,0) → class 2; (1,1) → class 3 
Pick a victim from the lowest numbered class.  When a page is brought in, 
all use bits are cleared. 
example: see handout 
 
Second-Chance Cyclic 
This is like NUR but without the randomness.  Use the same classes, but 
instead of selecting randomly, advance a pointer as in the clock algorithm.  
The class of the page the pointer is pointing to tells what to do: 

class after 
(1,1) (0,1) 
(1,0) (0,0) 
(0,1) (0,0)* 
(0,0) select this page 

example: see handout 
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Ad Hoc Techniques for Improving Performance 

 
The system can keep a pool of free frames.  When a process needs a 
page, the page in read into a free frame in the pool before the victim is 
written out, and when the victim is written out its frame is added to the 
free frame pool. 
• The process need not wait for the victim to be written out; 
• The system can do I/O periodically rather than on each page 

replacement (for example, when the number of free frames falls below 
some threshold); in this case, if a page is needed but has not yet been 
written out, its frame can just be removed from the free frame pool 
and reused (that is, no I/O needed).  The VAX/VMS operating system 
uses this technique to improve FIFO by reducing I/O. 

• If the paging device is idle, find pages with the dirty bit set, write them 
out, and then clear the dirty bit. 
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Page Allocation Algorithms 
  
 Several strategies are possible: 
• Use all frames before replacing pages; 
• Keep some free frames reserved so that when a page fault occurs, a 

page can be brought in while the victim is being chosen. 
Problem with demand paging and multiprogramming:  How does the 
system allocate frames to a process? 
• The most frames a process can get is all of them! 
• The least frames a process can get is defined by the architecture: 
 As a page fault causes the current instruction to restart, this gives a 

bound on the maximum number of pages a single instruction can 
reference 

 example: PDP-8: 1 memory address/instruction, so the minimum 
number of frames per process is: 
• 1 frame for the instruction 
• 1 frame for the address, which may be an indirect address 

(pointer), so … 
• 1 frame for the value pointed to by an indirect address 
for at most 3 frames per instruction, and therefore at least 3 frames 
per process. 

 example: PDP-11:  2 memory addresses/instruction, as an instruction 
may be longer than 1 word; so the minimum number of frames per 
process is: 
• 2 frames for the instruction 
• 1 frame per address, which may be an indirect address (pointer), so 

… 
• 1 frame for the value pointed to by an indirect address 
for at most 6 frames per instruction, and therefore at least 6 frames 
per process. 
example: Data General Nova 3: this allowed multiple levels of 
indirection.  Each16 bit word has 15 bit addresses and 1 indirect bit, 
so the indirection could go on forever!   The engineers modified the 
architecture to allow at most 16 levels of indirection, so each address 
requires at most 17 frames. 

 
Global or Local Frame Allocation 
• Global allocation: frames for replacement pages are taken from the set 

of all frames grab replacement from set of all frame 
Problems: 
(1) The program does not control its own paging behavior 
(2) The program may perform very differently due to external factors. 
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• Local allocation: frames for replacement pages are taken from that 
process' set of frames 
⇒ the number of frames allocated to a process does not change 
Equal Allocation: if there are m frames and n processes, each process 

gets mn     frames 
Proportional Allocation:  Suppose the size of a process' virtual memory 

is si, and let S be the sum of all si.  Then process pi gets 
sim
S    frames. 

example: The system has 2 processes, one with a virtual memory of 
10K and the other with 127K, and there are 62 free frames. 
• Under equal allocation, each process gets 31 frames 
• Under proportional allocation, the first gets 

! 

10 " 62

137
= 5, and the 

second  

! 

127 " 62

137
= 57 frames. 

Note that if the degree of multiprogramming goes up, each process 
losses frames, but if it drops, each process gets more frames 
Problem:  all processes aretreated equal regardless of priority 
Solutions:  
(1) use a proportional allocation scheme based on priorities or a 

combination of sizes and priorities 
(2) allow a high priority process to take frames from a low priority 

process and use them for replacement. 
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Thrashing 
 
Thrashing occurs when a process spends more time paging than 

executing.  A prime cause is that the set of pages needed to avoid 
faulting for every page will not fit into the process' set of page frames. 

Suppose the operating system monitors CPU utilization and brings in a 
process if the degree of multiprogramming is too low.  One scenario, on a 
system using a global page replacement algorithm, is: 
(1) a process needs more frames, and gets them from other processes; 
(2) those other processes begin page faulting, and queueing for the 

paging device; 
(3) the ready queue empties; 
(4) CPU utilization drops; 
(5) more processes are brought in, and they grab pages from executing 

processes; 
(6) more processes queue up for the paging device; 
… 
The throughout plunges.  Processes pages, but do no work, and the 
effective memory access time increases. 

degree of multiprogramming
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A local replacement algorithm will limit the effect of page faulting to 

one process, but increased contention for the paging device increases 
effective memory access time for all processes. 



ECS 150 (Operating Systems)  Memory Management 

Spring Quarter 2008  39 

 
Principle of locality 

 
As a program runs, it moves from locality to locality 
That is, references tend to be grouped. 
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Working Set Model 
 
Let the current time be t. Then 

W(t, τ) = { pages referenced in last τ time units } 
where τ is the window size, or the size of the working set (a tuneable 
parameter). 
example: see handout. 

This ties process management to memory management via the 
Working Set Principle: 

A process may execute only if its working set is 
resident in main memory.  A page may not be 
removed from main memory if it is in the working 
set of an executing process. 

Properties: 
(1) the size of a working set can vary: 

1 < |W(t, τ)| < min(τ, number of pages in process) 
(2) W(t, τ) ⊆ W(t, τ+1), so working set is a stack algorithm. 

Typically, the working set of a process undergoes periods of fairly 
consistent size alternating with periods of larger size (as the process 
moves to a new locality): 

W
S
 s
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e

timestable stablestable

t r t r t r t r

changes in Working Set size over time

tr = period of transition from one locality to another

stable = period in one locality

 
The stable periods account for usually 98% of the process time; the 
remaining 2% has half of all page faults.  During transitions, the fault 
rates are 100-1000 times more than in the stable range. 

Ideally, τ is large enough so the working set contains all pages being 
frequently accessed, and small enough so that it contains only those 
pages.  A typical value is τ = 0.5 sec. 
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Implementation:  It requires an accurate virtual clock.  Whenever a page is 
accessed, the current time according to that clock is recorded in the page 
table.  The working set contains all pages whose access time is within t of 
the present time. 
Problem:  Too expensive. 
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Working Set Approximations 
 
All try to approximate membership in the working set by examining 

what pages have been referenced since the last page fault or last few 
faults.  The algorithms differ in the way they examine the pages in the 
system to decide how to do this approximation. 

 
WSCLOCK 

With this algorithm, use a clock type scan through the frame table.  A 
page fault in any process starts the scan. 
• use bit set: 
 Clear it and store the virtual time of the process owning the page in 

that frame in a referenced time field; this is an approximation of when 
the page was last referenced. 

• use bit clear: 
Compare current virtual time of the process owning the page in that 
frame in a referenced time field; if the difference is more than t, the 
page is not in the process' current working set and can be removed. 

If no page can be removed, swap out a process 
 
Working Set Size (WSS) 

The memory manager maintains estimates of the sizes of working sets 
rather than the number of pages in it.  When a process is brought in by 
the medium (or long)-term scheduler, the working set size is estimated by 
counting the number of pages recently accessed (for example, by looking 
at the use bits in the process page table) and the process does not go 
onto the ready list until that many page frames are available. 
 
Page Fault Frequency (PFF) 

This bases decisions about membership in the working set on the 
frequency of page faulting. In effect, it computes the working set at each 
page fault, rather than continuously.  Define a (tunable) parameter p.  At 
each page fault, compare the time since the previous page fault to p: 
• if this time is smaller than p, the page is added to the working set; 
• if this time is larger than p, remove from the working set all pages not 

referenced since the previous page fault. 
Implementation: on each page fault, clear all use bits. 
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Other Considerations for Paging 
 
Prepaging 

When a process is started (or restarted) try to bring into memory at 
one time all the pages that will be needed.  This will reduce initial faulting 
considerably. 
example: for Working Set, keep a list of pages in the current working set 
with each swapped-out process 
Cost tradeoff: some prepaged pages may not be used. Does this cost 
more than servicing the interrupts caused by faulting? 
 
I/O interlock 

If doing DMA from a device to a buffer in the user's memory, a page 
may need to be locked into memory; such a page cannot be swapped out! 
Solutions: 
(a) Do all I/O to system memory and then copy to the user buffer. 
(b) Associate a lock bit with each page; if set, that page stays in 

memory.  This bit can also be used to prevent replacement of pages 
belonging to a process just swapped in but not yet executed. 

 example:  when a process is brought in (eg. after a page fault) and is 
on the ready queue, a higher priority process which currently has the 
CPU may page fault, and take a frame from the newly-arrived lower 
priority process (those are not used in a while, and are not dirty).  
But if those have the lock bit set, then they will not be selected as 
victims. 

 
Page Size 

If a machine exists, you rarely have a choice of page sizes, but if you 
are designing a new machine, you want to pick a good page size.  
Considerations: 
• the size of the page table is inversely proportional to the page size. 
 example: if the size of virtual memory is 222 words, the system can 

have 214 pages of 28 words or 210 pages of 212 words. 
  As each active process needs a copy of the page table, this 

consideration means large page sizes are better. 
• memory utilization is better with smaller page sizes as there is less 

internal fragmentation. 
• the time to read/write a page is less with larger page sizes as there is 

only one seek (or rotational) latency involved.  As this dominates 
transfer time, you want to make the page size big, so the system only 
does one wait for the device to be positioned. 

• reducing total I/O means we want the page size to match the size of 
the program's (typical) locality, so we only have to bring in the 
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memory actually used; hence a smaller page size means less is 
transferred. 

• reducing the rate of page faults means that there is less time servicing 
interrupts, doing I/O related to paging, etc., and a large page size cuts 
this down. 

Some systems allow more than one page size! 
example: GE 645 allows pages of either 64 or 1024 words; the IBM 370 
allows page sizes of 2048 or 4096 words.  

 
Program Structure 
Taking paging into account can improve program performance, especially 
when arrays are involved.  Say page size is 1024: 

 for (j = 0; j < 1024; j++) 
  for (i = 0; i < 1024; i++) 
   array[i][j] = 0; 

does array[0][0]…array[1][0]… 
C stores arrays by rows, so there will be one row per page and, in the 
worst case, 10242 = 1048576 page faults.  Writing 

array[j][i] = 0 
reduces this to 1024 page faults in the worst case. 
 
Data Structures 

Some (eg., stack) have good locality and are well suited for paging.  
Others (eg. a hash table) do not have good locality. 
 
Arrangement of Routines During Loading 

Routines which call each other many times might be loaded on the 
same page to reduce page faulting. 
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Storage as a Hierarchy 
  

Magnetic Tape Library

Disk Drives

Backing Store

Main Memory

Cache

Registers

Throughout, often-referenced

information is moved into a

quicker (lower) level of the

hierarchy.

Atlas used core memory as

a cache, and paging was used

to implement cache

management.

 
 
This also leads to the notion of automatic archiving. 
 


