
ECS 150 (Operating Systems) Process Scheduling

 1

P r o ce s s S che d u l i n gP ro ce s s S che d u l i n g

Goal

What characterizes a “fair internal policy?” Which process is given
the CPU next? This is the province of schedulers.

ECS 150 (Operating Systems) Process Scheduling

 2

Schedulers

Three kinds:
• long-term scheduler determines which jobs are admitted to the system

for processing
 example: in a batch system, often more jobs are submitted than can

be done at once, so some are spooled out to a mass storage device;
the long-term scheduler selects the next one to be loaded into
memory. So it controls the degree of multiprogramming, i.e., the
number of processes in memory.

• short-term scheduler determines which job in memory (i.e., in the
ready queue) goes next

• medium-term scheduler: at times jobs may have to be removed from
the system temporarily; that is, too many jobs may be competing for
memory. The removed process will be restarted where it left off later;
called swapping. This scheduler decides who gets swapped out and in.

The long term scheduler is invoked relatively infrequently, but the

short term one is invoked often — whenever any process returns control
to the operating system. Hence the short-term scheduler must be very
fast. (Context switching also must be very fast; typically, 10µs to 100µs.
Many machines have special-purpose instructions, like the VAX LDCTX, for
just this reason.)

The system should try to balance CPU-bound and I/O-bound jobs.

ECS 150 (Operating Systems) Process Scheduling

 3

Scheduling Considerations and Overview

These choose which process goes next. Which one is used depends on

what is wanted from the system; possible measures are:
• throughput; get the most work done in a given time
• turnaround; complete jobs as soon as possible after submission
• response; minimize the amount of time from submission to the first

response (called the response time); this interval does not include the
time to output the response

• resource use; keep each type of resource assigned to some process
as much as possible, but avoid waiting too long for certain resources.

• waiting time; minimize the amount of time the process sits in the
ready queue

• consistency; treat processes with given characteristics in a
predictable manner that doesn't vary greatly over time.

In the process of scheduling, the processes being considered must be
distinguished upon many parameters, among them
 priority
 anticipated resource need (including running time)
 running time, resources used so far
 interactive/non-interactive
 frequency of I/O requests
 time spent waiting for service
To demonstrate how algorithms work, we'll use this set of jobs:

 Arrival Time Service Time
A 0 10
B 1 29
C 2 3
D 3 7
E 4 12

and measure 3 quantities:
• turnaround time: time the process is present in the system

T = finish time - arrival time
• waiting time: time the process is present and not running

W = T - service time
• response ratio (sometimes called the “penalty ratio”): the factor by

which the processing rate is reduced, from the user's point of view:

R = T
 service time

ECS 150 (Operating Systems) Process Scheduling

 4

Characterization of Scheduling Algorithms

decision mode

This is non-preemptive if a process runs until it blocks or completes; at
no time during its run will the operating system replace it with another
job. It is preemptive if the operating system can interrupt the currently
running process to start another one.
priority function

This is a mathematical function which assigns a priority to the process;
the process with the highest (numerical) priority goes next. The function
usually involves the service time so far a, the real time spent in the
system so far r, and the total required service time t.
arbitration rule

If two processes have the same priority, this rule states how one of
them is selected to run.

ECS 150 (Operating Systems) Process Scheduling

 5

The Scheduling Algorithms

First Come, First Served (FCFS)

decision mode: non-preemptive
priority function: p(a, r, t) = r
arbitration rule: random

 service
time

arrival
time

start finish T W R

A 10 0 0 10 10 0 1.0
B 29 1 10 39 38 9 1.3
C 3 2 39 42 40 37 13.3
D 7 3 42 49 46 39 6.6
E 12 4 49 61 57 45 4.8

mean 38.2 26 5.4
A potential problem is when a short job follows a long one:

 service
time

arrival
time

start finish T W R

A' 1000 0 0 1000 1000 0 1.0
B' 1 1 1000 1001 1000 999 1000.0

 Gantt Chart:

A B C D E

0 10 39 42 49 61

Basically, long processes love FCFS, but short ones seem to be much
slower.

ECS 150 (Operating Systems) Process Scheduling

 6

Shortest Job Next (SJN), Shortest Job First (SJF), Shortest Process Next
(SPN)

As an estimate of the total service time neded is required, this
algorithm is usually used in batch systems.

decision mode: non-preemptive
priority function: p(a, r, t) = –t
arbitration rule: chronological or random

 service
time

arrival
time

start finish T W R

A 10 0 0 10 10 0 1.0
B 29 1 32 61 60 31 2.1
C 3 2 10 13 11 8 3.7
D 7 3 13 20 17 39 2.4
E 12 4 20 32 28 10 2.3

mean 25.2 17.6 2.3
Claim: Shortest Job First gives the smallest average turnaround time T out
of all non-preemptive priority functions.
Proof: Suppose n jobs arrive at the same time, with t1 ≤ t2 ≤ … ≤ tn.
Then T(t1) = t1, T(t2) = t1 + t2, …, hence the average turnaround time is

Tav = Σi iti
Now suppose ta and tb, a < b, are swapped. The new average turnaround
time is:

 T'
av

 =
n

1
 (nt

1
 + (n- 1)t

2
 + … + (n- a+1)t

b
 + … + (n- b+1)t

a
 + … + t

n
)

so

 T'
av

 - T
av

 =
n

1
 ((n- a+1)t

b
 - (n- b+1)t

a
 + (n- a+1)t

a
 - (n- b+1)t

b
)

and

 T'
av

 - T
av

 =
n

1 (b- a)(t
b
- t

a
) ! 0 because b ! a i mpl i es t

b
 ! t

a
.

Problem: need to know service times into the future so you can run the
process with the shortest next CPU burst. How does the short-term
scheduler choose the next process to run? It can use a number of
different ways:
• Most accurate is to run all ready processes, time the CPU bursts, and

then schedule them (snicker)
• Characterize each process as CPU-bound or I/O-bound, and specify for

each an “average service time needed” based upon timing processes
over a period of time and averaging. Note that characteristics might

ECS 150 (Operating Systems) Process Scheduling

 7

change over a period of time; that is, a process might be CPU-bound
for a time, then I/O-bound, then CPU-bound, etc.

• Compute the expected time of the next CPU-burst as an exponential
average of previous CPU-bursts of the process. Let tn be the length of
the n-th CPU burst, and tn+1 the expected length of the next burst;
then

tn+1 = atn + (1-a)tn
 where a is a parameter indicating how much to count past history

(usually chosen around 12)
a = 1 the estimate is simply the length of the last CPU burst
a = 0 the estimate is the initial estimate holds

12

10

8

6

4

2

0
0 1 2 3 4 5 6 7 8

burst

length

actual

estimated

t 6 4 6 4 13 13 13 13
i

t
i

8 6 6 5 9 11 12 1310

Comparing exponential estimation with actual values: = 1/2a
SPN is better than FCFS for short jobs, but long jobs may have to wait for
some time for service.

The long-term scheduler can simply use the job's time limit as
specified by the user; this motivates users to be realistic in their limits,
as:
• limits too low: job aborts with a “time limit exceeded”.
• limits too high: the turnaround time may be very long.

ECS 150 (Operating Systems) Process Scheduling

 8

Shortest Remaining Time (SRT), Preemptive Shortest Process Next (PSPN)
This is like SPN, but preemptive.

decision mode: preemptive (at arrival)
priority function: p(a, r, t) = a–t
arbitration rule: chronological or random

 service
time

arrival
time

start finish T W R

A 10 0 0, 12 2, 20 20 10 2.0
B 29 1 32 61 60 31 2.1
C 3 2 2 5 3 0 1.0
D 7 3 5 12 9 2 1.3
E 12 4 20 32 28 16 2.3

mean 24 11.8 1.74
Miscellaneous:
• Whenever a new job comes in, check the remaining service time on the

current job.
• For all but the longest jobs, SRT better than SJF
• The response ratio is good (low)
• Waiting time is also quite low for most processes.

ECS 150 (Operating Systems) Process Scheduling

 9

Highest Response Ratio Next (HRRN, HRN)
This tries to level out bias towards long or short jobs

decision mode: non-preemptive
priority function: p(a, r, t) = a/c
arbitration rule: random or FIFO

 service
time

arrival
time

start finish T W R

A 10 0 0 10 20 10 2.0
B 29 1 32 61 60 31 2.1
C 3 2 2 5 3 0 1.0
D 7 3 5 12 9 2 1.3
E 12 4 20 32 28 16 2.3

mean 25.2 13 2.3
Why? Here are the response ratios as each process completes:

time A B C D E
10 29+9

29 =1.3 3+8
3 =3.7 7+7

7 =2.0 12+6
12 =1.5

13 29+12
29 =1.4 7+10

7

=2.4

12+9
12 =1.8

20 29+19
29 =1.7 12+16

12
=2.3

32 29+31
29

=2.1

The ratio used is actually
estimated service time + waiting time so far

 estimated service time
The idea behind this method is to get the mean response ratio low, so if a
job has a high response ratio, it should be run at once to reduce the
mean.

ECS 150 (Operating Systems) Process Scheduling

 10

Round Robin (RR) with Quantum q
This is especially designed for time sharing; the quantum is typically

1
60 ≤ q ≤ 1 seconds.

decision mode: preemptive (at quantum)
priority function: p(a, r, t) = c
arbitration rule: cyclic

In this example the quantum is 5:
 service

time
arrival
time

start finish T W R

A 10 0 … 28 28 18 2.8
B 29 1 … 61 60 31 2.1
C 3 2 … 13 11 8 3.7
D 7 3 … 35 32 25 4.6
E 12 4 … 47 43 31 3.5

mean 34.8 22.6 3.3
Why? Here is what things look like:
time 0 5 10 13 18 23 28 33 35 40 45 47 52 57 61
proc. A B C D E A B D E B E B B B
rem 5 24 0 2 7 0 19 0 2 14 0 9 4 0
(here, “proc” is the process starting at the indicated time, and “rem” the
remaining time after the quantum is complete.)
• As each process is preempted, it moves to the rear of the queue
• All new arrivals come in at the rear of the queue
• As q ∞ 0, every process thinks it is getting constant service from a

processor that is slower in proportion to the number of competing
processes; this is called processor sharing. This scheme is used in
hardware in CDC6600 to implement 10 peripheral processors with one
set of hardware (i.e., processor) and 10 sets of registers; the
processor does 1 instruction for one set of registers, then goes on to
the next set. (This turns out to be not much slower than a real
processor.)

Variants:
• Round Robin, but adjust quantum periodically.

 example: after every process switch, the quantum becomes q/n,
where n is the number of processes in the ready list
• few ready processes means that each gets a long quantum,

minimizing process switches.
• a lot of ready processes means that this algorithm gives more

processes a shot at the CPU over a fixed period of time, at the
price of more process switching

• processes needing a small amount of CPU time get a quantum
fairly soon, and hence may finish sooner.

ECS 150 (Operating Systems) Process Scheduling

 11

• Round Robin, but give the current process an extra quantum when a
new process arrives

This reduces process switching in proportion to the number of
processes arriving.

ECS 150 (Operating Systems) Process Scheduling

 12

Multilevel Feedback Queues (MLF, MLFB) with n different priority levels
each of priority Tp

Processes start out in the uppermost level. After getting T0 units of
CPU time, it drops to the next lower level, and after units of CPU time at
that level, it drops down again …, until it reaches the lowest level. If it
blocks or otherwise leaves the scheduling system, and later returns, it
may reenter the feedback queues at another queue (for example, the top
one).

decision mode: preemptive (at quantum)
priority function: p(a) = n - i, where i satisfies both 0 ≤ i < n and

T0(2i—1) ≤ a < T0(2i+1—1), assuming that Tp
= 2pT0

arbitration rule: cyclic or chronological within queues
In this example the quantum is 1, n = 3, T0 = 2, and Tp = 2pT0:

 service
time

arrival
time

start finish T W R

A 10 0 … … 38 28 3.8
B 29 1 … … 60 31 2.1
C 3 2 … … 11 8 3.7
D 7 3 … … 27 20 3.9
E 12 4 … … 40 28 3.3

mean 35.2 23.3 3.4
This algorithm favors short processes by giving them more of the CPU.
It is also adaptive, in that it responds to the changing behavior of the

system it controls.
Variants
• MLFB with round robin for all but the lowest level, and thatr first come

first serve (but preemption possible, of course):
 service

time
arrival
time

start finish T W R

A 10 0 … … 25 15 2.5
B 29 1 … … 49 20 2.5
C 3 2 … … 11 8 1.4
D 7 3 … … 50 43 1.2
E 12 4 … … 57 45 1.3

mean 38.4 26.2 1.8

ECS 150 (Operating Systems) Process Scheduling

 13

External Priority Methods

These adjust priority based on some external factors, and are quite

common when users pay based upon their computer use.
Examples:
• round robin, where the quantum is set independently for each process,

based on the external priority of process (i.e., the more you pay, the
bigger the quantum.)

• Worst Service Next: after each quantum, compute a “suffering
function” (based on how long the process had to wait, how many
times it has been preempted, how much the user is paying, and/or the
amount of time and resources used). The process with the greatest
suffering gets the next quantum.

• The user buys a response ratio guarantee; the suffering function used
takes into account the difference between the guaranteed response
ratio and the actual response ratio at the moment.

• Deadline Scheduling: each process specifies how much service it needs
and by what real time it must be finished. The algorithm tries not to
run jobs that cannot meet their deadline.

• Fair-Share Scheduling: allocate blocks of CPU time to a particular set
of processes, usually by splitting user processes into groups; within
each group, use a standard schedule, but allocate the CPU
proportionately to each group
example: All processes are infinite loops; 1 process in group 1, 2 in
group 2, 3 in group 3, and 4 in group 4
regular scheduler: each process gets 10%
fair share scheduler: each group gets 25%; processes in sgroup share

equally
example: This uses UNIX internal, not external, priorities. Here, 3
processes: process A in one group; processes B and C in another
group. The internal priority function is:

priority = recent CPU usage
2 + group CPU usage

2 + threshhold
(with the threshold being 60 for user processes). A decay function
decrements the current CPU usage of processes not run; this has the
effect of raising their priority. The function is:

decay of CPU usage = CPU usage
2

example of the UNIX Fair Share Scheduler: Here, the quantum is 1
second. Note that the higher the priority, the lower the integer
representing that priority.

ECS 150 (Operating Systems) Process Scheduling

 14

A runs for 1 second
 decay applied to CPU and group CPU usage; A's new priority is 60 +

30
2 + 30

2 = 90. As B and C now have higher priority, one of them
(say, B) goes next.

B runs for 1 second
decay applied to CPU and group CPU usage; A's new priority is 60 +
15
2 + 15

2 = 74, B's new priority is 60 + 30
2 + 30

2 = 90, and C's

new priority is 60 + 02 + 30
2 = 75; A has the highest priority, so it

runs next.
A runs for 1 second.

decay applied to CPU and group CPU usage; A's new priority is 60 +
37
2 + 37

2 = 96, B's new priority is 60 + 15
2 + 15

2 = 74, and C's

new priority is 60 + 02 + 15
2 = 67; C has the highest priority, so it

runs next.
C runs for 1 second.

decay applied to CPU and group CPU usage; A's new priority is 60 +
18
2 + 18

2 = 96, B's new priority is 60 + 72 + 37
2 = 81, and C's

new priority is 60 + 30
2 + 37

2 = 93; A has the highest priority, so
it runs next.

Hence the order of running is A B A C A B A C …, with A getting 50%
of the CPU and B and C together getting 50%.

example: VAX/VMS scheduler
 This scheduler has 32 priority levels: levels 31 to 16 are for real-time
processes, and levels 15 to 0 for regular processes. Real-time processes
have fixed priority throughout their lifetime; but the priority of regular
processes is dynamic:

• at process creation, a base priority assigned; this is the process'
minimum priority

• the current priority of the process is altered by a system events,
each of which has an associated increment, i.e., terminal read
increment > terminal write increment > disk I/O

When awakened due to a system event, the appropriate
increment is added to the current priority value; on preemption due
to quantum expiration, the current priority drops by 1.

ECS 150 (Operating Systems) Process Scheduling

 15

event

preemption

preemption

preemption

current

priority

time
Processes are dispatched by their current priority.

This scheme is like a MLFB scheme, with two differences:
• processes need not start at the highest level; and
• quanta are associated with each process, not level

