
ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 1

I n t e r p r o ce s s S ynch ro n i z a t i o n a nd I n t e r p r o ce s s S ynch ro n i z a t i o n a nd
Co m m un i c a t i o nCo m m un i c a t i o n

Goal

To understand how these are implemented we need to look at what
they are and why they are necessary.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 2

Parallelism

What Is It?

This is having statements execute simultaneously. Why? The
system may have multiple CPUs or may have special units such as Floating
Point Units which can compute at the same time as the CPU. Problem:
some statements must be completed before others may be begun; for
example, consider

1 a: = x+y
2 b: = z+1
3 c: = a-b
4 d: = c+1

1 and 2 must finish before 3 can begin, but 1 and 2 can be done
independently. This is a precedence constraint .

Precedence graphs and process flow graphs are used to examine
processes for parallel work.
example: The following two graphs represent the same thing:

precedence graph

 S1

S2 S5 S7

S3 S4

S6

S8

S

E

p1

p2

p7

p5

p4

p3
p6

p8

process flow graph

These are really equivalent (one focuses on statements, the other on
processes). These graphs must be acyclic.

Bernstein conditions

These describe when statements can be executed in parallel.
Define

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 3

R(Si) = { variables whose value is referenced in statement si }
W(Si) = { variables whose value is changed in statement si }

For example, in the example above
R(S1) = {x, y} R(S2) = {z} R(S3) = {a, b} R(S4) = {c}
W(S1) = {a} W(S2) = {b} W(S3) = {c} W(S4) = {d}

precedence graph:
Start

S1 S2

S3

S4
Now, Si and Sj may be done concurrently if the Bernstein conditions hold:

W(Si) … W(Sj) = ∅ and R(Si) … W(Sj) = ∅ and W(Si) … R(Sj) = ∅
In the above example, this agrees with the intuition.

Parallel Programming Constructs
fork, join, quit
The earliest parallel constructs were fork and join. Fork looks like fork
label and splits the process into two, one of which begins at label and
the other which falls through.
example:

 fork L;
 a := x+y;
 …
L: b := z+1;

Join merges processes and has the form join count label; count is
decremented and if zero, there is a branch to label: That is,

count := count - 1;
if count = 0 then goto label;

(Note: in some texts, process terminates instead of branches.)
Quit terminates process.
example: count =2;

 fork dopar;
 a := x+y;
 go to donepar;
dopar: b := z+1;
donepar: join count, cont;
 quit;
cont: c := a-b;

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 4

 d := c+1;
As a second example, the program equivalent to the process flow graph
above is:

 t6 := 2;
 t8 := 3;
 S1; fork p2; fork pt; fork p7; quit
p2: S2; for L p3: fork p4; quit;
p5: S5; join t6, p6; quit
p7: S7; join t8, p8; quit
p3: S3; join t8, p8; quit
p4: S4; join t6, p6; quit
p6: S6; join t8, p8; quit;
p8: S8; quit

where Si is the program for pi.
Strengths: simple, powerful, easy to derive from precedence graphs
Weakness: clumsy, lots of gotos and goto like structures.

parbegin,parend

Dijkstra suggested these as a goto-less mechanism; they bracket
statements (or blocks of statements) to be done in parallel.
example:

parbebin
 a: = x+y;
 b: = z+1;
parend
c: = a-b;
d: = c+1;

Strength: easy to read, uses principles of modular programming, etc.
Weakness: not so powerful as the fork-join-quit set.

To see why, consider the idesa of proper nesting. Let
S(a,b) represent the serial execution of processes a and b
P(a,b) represent the parallel execution of processes a and b

Then a process flow graph is properly nested if it can be described by P,
S, and functional composition.
example: the first example's process flow graph is

S

p1 p2

p3

p4

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 5

which is S(S(P(p1, p2), p3, p4)
But the second example cannot be so described.
Claim The second example is not properly nested.
Proof For something to be properly nested, it must be of the form S(pi,

pj) or P(pi, pj) at the most interior level.
Clearly the example's most interior level is not P(pi, pj) as

there are no constructs of that form in the graph.
In the graph, all serially connected processes pi and pj have at

least 1 more process pk starting or finishing at the node nij
between pi and pj; but if S(pi, pj) is in the innermost level, there
can be no such pk (else a more interior P or S is needed,
contradiction). Hence, it's not S(pi, pj) either.

Clearly, parbegin-parend works only when the process flow graph is
properly nested.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 6

The problem with process interaction

This is best illustrated by an example, called the bounded buffer
producer/consumer problem; we use a buffer of n items.
 var buffer: array [0..n-1] of item;
 in, out: 0...n-1;
 counter: 0...n
producer: repeat
 make next p;
 while counter = n do (* nothing *);
 buffer [in] := next p;
 in := (in+1) mod n;
 counter: = counter + 1;
 until false;
consumer: repeat
 while counter = 0 do (* nothing *);
 next: = buffer[out];
 out: = (out + 1) mod n
 counter: = counter - 1;
 until false;

If each loop is executed separately, this works fine; but if
intermingled …

Suppose counter is 3, and loot at counter: = counter + 1 and
counter: = counter - 1. These might compile into the following:
counter: = counter + 1 counter: = counter - 1
C1 r1: = counter; P1 r2 : = counter;
C2 r1: = r1 + 1; P2 r2: = r2 - 1;
C3 counter: = r1; P3 counter: = r2;
depending on how these sets of statements intermingle, counter could
have one of three values:

P1 P2 C1 C2 P3 C3 counter = 4
P1 P2 C1 C2 C3 P3 counter = 6
P1 P2 P3 C1 C2 C3 counter = 5

Why? 2 processes manipulated counter simultaneously. Clearly, we
need to ensure just one process does.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 7

The Critical Section Problem and Its Solutions

Critical Section Problem

A critical section is a block of code that only one process at a time
can execute; so, when one process is in its critical section, no other
process may be in its critical section.
Problem: design a protocol to solve this problem.
Generic description of framework: Every solution will have the following
layout:

entry section
critical section
exit section
remainder section

Requirements to be a Solution
1. Mutual exclusion; at most one process in the critical section at a time.
2. Progress ; if no process in the critical section, and some wish to enter,

then only processes not in remainder section can take part in deciding
whichj one enters.

3. Bounded Wait; a bound on the number of times other processes are
allowed to enter the critical section after a process asks to enter its
critical section and before it is allowed to.

Assumption made implicitly: each process runs at nonzero speed, but no
assumption is made as to relative speed.

Two-Process Solutions

We will use processes p0 and p1, also known as pi and pj, with
either i = 0 and j = 1 or with i = 1 and j = 0. The current process is
always pi; the other one, pj.

Analyses of Sample Solutions

Our goal is to learn how to analyze a proposed solution. The best
way to do this is by examples:

Example 1.

var turn: 0..1; (* whose turn it is *)
while turn ≠ i do … entry section
 (* nothing *);
 … critical section
turn := j; … exit section

Is mutual exclusion satisfied? As turn can have only 1 value, it is.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 8

As for progress, note the processes enter their critical section in alternate
order; hence progress is not met.

Example 2.

var inCS: array[0..1] of booleans := false;
 (* who is in critical section *)

while inCS[j] do … entry section
 (* nothing *);
inCS[i] := true;
 … critical section
inCS[j] := false; … exit section

Is mutual exclusion satisfied? Suppose pi and pj both execute the while
statement at the same time. As both inCS[i] and inCS[j] are
false, both proceed through, set inCS[i] and inCS[j] to true, and
enter their critical section. So mutual exclusion is violated.

Example 3.

var interested: array[0..1] of booleans := false;
 (* who wants to enter critical section
*)

interested[i] := true; … entry section
while interested[j] do
 (* nothing *);
 … critical section
interested[j] := false; … exit section

Is mutual exclusion satisfied? The only way into the critical section is if
interested[j] is false; but if a process is in the critical section,
interested[j] must be true. Hence at most one process can be in
the critical section at a time, proving mutual exclusion holds.

Is progress satisfied? Suppose both processes hit the while loop at the
same time. Then they loop forever. So progress is not satisfied.

Example 4.

var interested: array[0..1] of booleans := false;
 (* who wants to enter critical section
*)

turn: 0..1;
interested[i] := true; … entry section
turn := j;
while interested[j] and turn = j do
 (* nothing *);
 … critical section
interested[j] := false; … exit section

Is mutual exclusion satisfied? Note first that pi enters its critical section
only if interested[j] is false and turn is i. For both to be in the
critical section, interested[i] and interested[j] are both true.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 9

Both could not have passed through the while loop at the same time
(as turn is i or j but not both), so one did the loop while the other
did one of the preceding lines. Say pi does the preceding lines and pj
is in the loop. After doing the first line in the entry section,
interested[i] and interested[j] are both true, and turn is j, so
pi stops at the while and the next time pj goes, it enters the critical
section; in short, at most one process can be in the critical section. So
mutual exclusion holds.

Are bounded wait and progress both satisfied? First, notice that pi is
blocked from entering the critical section only if it is stuck at the while
loop, which means that interested[j] is true and turn is j. If pj is
not in the entry or critical sections, interested[j] is false and pi
goes in. If pj is at the while statement in the entry section, turn is
either i or j, and the process with index the same as turn will go in.
Now, once pi leaves the critical section, interested[i] is false and
pj can go in (or vice versa). If pj resets interested[j] is true, then
turn will be set to i and pi goes in. This means that only the
processes in the entry, exit, or critical sections affect which process
goes in, giving progress. Further, at most one additional entry by pj
will occur if both request entry at the same time, so bounded waiting
holds.

Hence this is a solution to the critical section problem; in fact, it is
Peterson's Solution.

N-process Solution

Lamport's Bakery Algorithm (see handout) is one solution.
Is mutual exclusion satisfied? let Pi be in the critical section. If Pk (k ≠ i)

has chosen number[k] ≠ 0, (number [i],i) < (number [k],k). Now,
suppose Pk trying to enter, and Pi is in the critical section. When Pk
runs with j = i, it sees number [i] ≠ 0 and (n[i], i) < (n[k], k) and
therefore loops.

Are bounded wait and progress satisfied? Yes, as processes enter the
critical section on FIFO basis.

Hardware Solutions

The critical section problem is easier to solve using hardware
instructions, for example the atomic test-and-set instruction:
 function TaS(var Lock: boolean): boolean
 begin
 TaS: = Lock;
 Lock = True;
 end;
which is used to solve the N-process problem (see handout)

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 10

All of the above solutions (software and hardware) have problems:

1. busy waiting; the CPU does nothing in such a way that no-one else can
use it

2. complex, not easily generalizable; for example, Peterson's solution
does not easily generalize to N processes.

To solve these, we can define other hardware constructs. For example:

ECS 150 (Operating Systems) Synchronization & Communication

Sring Quarter 2008 11

semaphores

semaphores

This is a non-negative integer variable S that can be operated on in 3
ways.
1. initialization operation sets initial value atomically:

S := n;
2. signal or V operation increments value atomically:

S := S + 1;
3. wait or P operation blocks until S is non-zero, then decrements value;

the whole thing is atomic:
while S = 0 do block;
S := S - 1;

Mathematically, let:

ns number of signals
nw number of completed wait operations (i.e., not suspended)
iv initial value
vs value of semaphore

Then for a semaphore mutex, the definitions give:
vs(mutex) = iv(mutex) + ns(mutex) - nw(mutex)

but as vs ≥ 0, we also have
nw(mutex) < ns(mutex) + iv(mutex)

Both of these are always true, and hence are invariants. So, for mutual
exclusion:

 P(mutex); (* critical section *); V(mutex);
If the initial value of mutex is 1, then the second invariant gives

nw(mutex) < ns(mutex) + 1
meaning that at most 1 process will be in the critical section at a time
(giving mutual exclusion).

2) Synchronization:
 A B
 … …
 P(mutex) V(mutex)
 … …
If the initial value of mutex is 0, process A will block at P(mutex) until
process B reaches V(mutex); and nw(mutex) ≤ ns(mutex).

ECS 150 (Operating Systems) Synchronization & Communication

Sring Quarter 2008 12

example: Recall the precedence graph
precedence graph

 S1

S2 S5 S7

S3 S4

S6

S8

S1;

parbegin

!begin S2; V(a); V(b); end;

!begin P(a); S3; V(c); end;

!begin P(b); S4; VB(d); end;

!begin S5; V(e); end;

!begin P(d); p(e); S6; V(f); end;

!begin S7; V(g); end;

!begin P(c); P(f); P(g); S8; end;

parend;

a
b

e

d

c

f

g

The implementation is usually First-In-First-Out queues; the first process
blocked is the first one allowed to continue.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 13

Testing Synchronization Primitives

Bounded Buffer Problem

Processes communicate through a buffer of fixed length. The
producer inserts items and the consumer extracts them.
Problem: prevent buffer overflow or underflow.

Assume:
n size of buffer
d number of items deposited
e number of items extracted

Obviously, 0 ≤ d - e ≤ n must hold.
From the order of operations:

in the producer: ns(full) ≤ d ≤ nw(empty)
in the consumer: ns(empty) ≤ e ≤ nw(full)

Hence
 d ≤ nw(empty) ≤ ns(empty) + n ≤ e + n
 e ≤ nw(full) ≤ ns(full) ≤ d

Combining, we have
e ≤ d ≤ e + n

Readers - Writers Problem

Here, a file is to be shared among several concurrent processes, each
of which is only interested in reading (the readers) or writing (the
writers).
Problem: to enforce Bernstein's conditions.

The nub is that writers need exclusive access to the file. This
suggests two variants, based on priority of the writers:
The first readers-writers problem: Readers have priority. Hence even if a
writer is waiting for the file, a new readers may start reading the file
provided another reader is also currently reading the file. This means that
writers may starve
The second readers-writers problem: Writers have priority. Hence once a
writer is waiting for the file, no new readers may start reading.
A solution to the first problem is in the handout.

The Dining Philosophers Problem

Five philosophers are dining at a circular table. They have five plates
(one in front of each philosopher) and five forks, one between each plate.
They alternate between thinking and using both their right and left forks
to eat.
Problem: prevent starvation and deadlock.
Example 1 of a Potential Solution:
Each philosopher picks up her left fork first:

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 14

 var fork: array [0..4] of semaphore: = 1,1,1,1,1
 repeat (* philosopher i *)
 P(fork[i]);
 P(fork[i + 1 mod 5]);
 (* eat *)
 V(fork[i]);
 V(fork[i + 1 mod 5]);
 (* think *)
 until false
This leads to deadlock.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 15

Abstraction

Problem with Semaphores

The problem is similar to that of fork/join/quit. P and V are too low-
level. Also, semaphores combine blocking with counting these are distinct
functions, which could be kept separate. Finally, they are murder to
debug; try typing a P for a V and then figure out where you did it!
Solution: build some higher level constructs

Abstract Datatypes

The theory of programming languages gives a technique to do this. A
class is a module giving representation of an abstract data type
example: type stack = class
 var stack: array [1.. 100] of integer;
 top: integer;
 procedure entry push(x: integer);
 begin
 if (checkpush()) then
 begin
 stack[top] := x;
 top := top + 1;
 end;
 end;
 procedure entry pop(var x: integer);
 begin
 if (checkpop()) then
 begin
 x := stack[top];
 top := top - 1;
 end;
 end;
 function checkpush(): boolean;
 begin
 checkpush := top <=100;
 end;
 function checkpop() = boolean,
 begin
 checkpop := top > 1;
 end; (* initialization *)
 begin
 top := 1;
 end;
Then you declare an instance of this type by

var calcstack: stack;
The type is the template, or definition; the instance is a variable of that
type.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 16

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 17

Monitors (Hoare)
Monitors are defined like a class, but they guarantee mutual exclusion;

only 1 process may be active in the monitor. So, when using one:
1. access to the encapsulated resource should be possible only via the

monitor
2. procedures in the monitor are mutually exclusive; when 1 process is

executing within the monitor, other processes calling procedures within
the monitor are delayed until that process leaves the monitor

So far, these are similar to critical regions. But to synchronize, define
condition variables and 2 operations:
wait on a condition variable (x.wait) - block process, put it on queue

associated with condition x
signal on a condition variable (x.signal) - if any process is blocked on

condition x, unblock one of them; if not, ignore the signal.
Note that the signal operation is memoryless (that is, if no-one is blocked,
the signal disappears and the next one to try to wait will wait); different
than semaphores (not memoryless).
Problem with signal: suppose P1 is blocked on x, and P2 signals on x.
Since only one process can be in the monitor at a time, one must block
until the other is done. Two methods are followed:
1. P2 waits until P1 either leaves monitor or waits for a condition (Hoare).

This gives simpler, more elegant proofs.
2. P1 waits until P2 either leaves monitor or waits for a condition

(Lampson & Redell). The programming language Mesa uses this. One
problem is that the “logical” condition for which P1 was waiting may
no longer be true when P2 leaves monitor; hence under this scheme,
the monitor must say

while not B do x.wait;
 and not

if not B do x.wait;

example: Binary semaphore with a monitor.

semaphore: monitor;
 var busy: boolean;
 notbusy: condition
 procedure entry P;
 begin
 if busy then
 notbusy.wait;
 busy: = true;
 end;
 procedure entry V;
 begin
 busy: = false;

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 18

 notbusy.signal;
 end;
 begin
 busy:= false;
 end.

example: producers/consumers problem (see handout)
example: first readers-writers problem (see handout)

Implementation: Here we consider Hoare's. We must assure:
1. execution of procedures in the monitor is mutually exclusive;
2. wait blocks the current process on corresponding condition
3. if a process exits or is blocked, and other processes are waiting to

enter the monitor, one must be selected; priority goes to those
blocked after issuing a signal, then those waiting to get in go, then
those blocked on a condition variable.

4. if a process issues a signal, it must determine if any process is waiting
on the corresponding condition; if so, current process is suspended
and a waiting one activated; else, the signaller continues.

See handout for how it is done.

Priority Waits

 Recall that signals restart processes in FIFO order, but sometimes
this is not good; for example, think of waiting for a specific time of day.
Hence define priority wait as:

c.wait(p)
where p is an integer and c a condition variable. If more than one process
waiting on c is signalled, the one with the lowest value of p resumes.
example: alarm clock (see handout).

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2009 19

Event Counters and Sequencers

These allow synchronization without mutual exclusion (but they can

provide mutual exclusion too). There are two parts:
Event counters are non-decreasing integers beginning at 0. Three

operations (here, E is an event counter):
advance(E) E := E + 1 atomically; indicates an event of

interest occurred
read(E) return(E); so, if E is n, at least n advance(E)

operations occurred
await(E,v) block until E has value v so this continues only when

at least v advance(E) operations occurred.
Sequencers also are non-decreasing integers beginning at 0. These are

used to order events, and one operation only is defined (here, S is a
sequencer):

ticket(S) olds := S;
 S := S + 1;
 return(oldS);
 executed atomically; this requires mutual exclusion

so no two calls will return the same value.
Mutual exclusion: await (E, ticket (S));
 …
 advance(E);
example: producer-consumer problem (see handout)

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 20

Shared Memory Synchronization

There are some cases where none of the above mechanisms are

satisfactory:
1. Security considerations may prevent sharing memory
 example: each process must run in strict isolation, in its own logical

space with all interactions under its own control; this is not possible
with monitor, as any process with access to the monitor can get global
data stored within the monitor.

2. It may not be possible to share memory
 example: in a distributed system, each processor may have its own

local memory and so processes on different processors cannot share
data.

In these cases a mechanism other than those based on shared memory
must be used; these new schemes are called message-based
synchronization schemes.

Interprocess Communication (IPC)

 Two primitives:
send(p, msg) transfers message msg to process p; special

(implementation-dependent) values of p can be used to
indicate that the message goes to all processes; this is
called broadcast.

receive(q, msg) obtains message msg from process q; special
(implementation-dependent) values of q can be used to
indicate that the message goes to all processes.

The answers to four basic questions characterize send/receive
primitives:
1. Does the sender wait until its message is accepted by the recipient, or

does it continue processing?
• if the sender blocks, the send is called blocking or synchronous
• if the sender may proceed while the message is being delivered,

send is non-blocking or asynchronous
2. What happens when a receive call is issued, but there is no message

waiting?
• if the process waits for a message to arrive, the receive is called

blocking or synchronous
• if the process continues, the receive is called nonblocking or

asynchronous
A related question is the size of the (system) queue used to hold
messages in transit. This queue, associated with the connection or link
between the two processes, has a capacity for a certain number of

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 21

messages; the capacity is a property of the link. There are three
different types of implementations:
1. A zero capacity link: the link cannot have any messages waiting;

the sender must wait until the recipient gets the message, or the
message is lost. It is most useful when the process transmits the
message from a buffer within the process (called rendezvous).

2. A bounded capacity link: If the capacity is n, then at most n
messages can be stored in the associated queue. If the queue is
not full, the message is copied into the queue. If it is full, the
sender must wait (or the message will be lost).

3. An unbounded capacity link: any number of messages can be
stored in the associated queue.

3. Must the sender specify exactly 1 recipient, or can messages be sent
to any (or all) of a number of recipients?

4. Must the recipient specify exactly 1 sender, or can messages be
accepted from any (or all) of a number of senders?

Naming

There are two types:
1. The sender or recipient is specified; called explicit naming or direct

communication.
 Relevant properties:

• the link between pairs of processes wanting to communicate is
established automatically; the processes need to know each other's
identity only.

• each link is associated with exactly 2 processes.
• between each pair of communicating processes, there is exactly

one link
• the link is bidirectional

 example: the producer/consumer problem (see handout)
A variant of this scheme is that the sender specifies the recipient, but
the recipient gets messages from any sender; on return of the receive
call, the process argument in the call is set to the name of the sending
process
Problem: lack of modularity, as if a process changes its name, all
references to it must also be changed.

2. Messages are sent to mailboxes or drop boxes; called implicit naming
or indirect communication.

 Relevant properties:
• there is a link between a pair of processes only if there is something

shared (like a mailbox)
• a link is associated with any number of processes

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 22

• between each pair of communicating processes, there may be many
links (specifically, 1 per mailbox)

• a link may be unidirectional or bidirectional
example: the producer/consumer problem (redo handout)
Problem: If two processes do a receive on a mailbox at the same time,
who gets the message? Three possibilities:
1. Each link is associated with exactly 2 processes so the problem

should never arise.
2. Only 1 process at a time may do a receive on a particular mailbox;

in this case, the mailbox is called a port.
3. The system selects which process (but not both of them!) gets the

message.
How do you create a mailbox? It can be done:
• within the process, by declaring the mailbox (like you declare a

variable to create it); that process gets all messages sent to the
mailbox, and when the process dies, the mailbox goes away.

• by the operating system, which provides system calls to create and
delete a mailbox. Usually the ability to receive messages from a
particular mailbox can be passed to another process via system
calls. May require garbage collection.

Other issues include:
• communications delay; onbe solution is to send until a reply

(acknowledgement) is received.
 example: Toth, internet higher level protocols (SMTP, TCP)
• process termination before message processed

1. if a recipient process P1 is waiting for a message from a terminated
process P2 using a blocking receive, P1 is blocked forever.

2. if a sender process P1 sends a message to a terminated process P2
using a blocking send on a zero-capacity link, P1 is blocked forever.

In both cases, the solution is to notify P1 that P2 has terminated, or
terminate P1

• messages lost in transfer
1. The operating system may be responsible for detecting this and

retransmitting the message or notifying the sender.
2. The sender may detectthis; it can resend the message.
Timeouts are used to detect this; one problem is they may be too
short, so messages are unnecessarily retransmitted.

• messages may be garbled or altered in transit
These can be detected by using message integrity codes such as
checksums or CRCs.

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 23

Remote Procedure Calls (RPC)

The send/receive mechanism has the same problems as semaphores;
they are too low-level, so the user must suce them like P and V and
abandon the idea of procedures. Remote procedure calling provides this
procedural interface.

Programmer view
 A remote procedure call is just like a regular procedure call, except the
procedure is in a separate address space and doesn't share global
variables

Implementation view
 Each remote procedure needs a separate process ; this process can be
created by the call to the procedure, or it can be a permanent process
(below, called an RP_guard) that reads parameters, runs the remote
procedure, and returns its result using send and receive primitives:

caller process RP_guard process

send(RP_guard, parameters) receive(caller, parameters)

RP(parameters)

send(caller, results)receive(RP_guard, results)

Example: the programming language ADA™

The accept statement designates a segment of code as a remote
procedure:

accept name(formal_parameter_list) do proc-body end
To call, the caller uses

name(actual_parameters)
• If the caller issues a call before the process containing the definition of

the called function hits the corresponding accept, the caller blocks.
When the process with the called function hits the accept, it executes
the statement body, and sends the results to the caller. Then both go
on.

• If the process containing the definition of the function hits accept
first, it blocks until the caller issues the corresponding remote

ECS 150 (Operating Systems) Synchronization & Communication

Spring Quarter 2008 24

procedure call; it then proceeds, sends the result to the caller, and
goes on.

Thus the accept mechanism is like blocking receive with explicit naming.
We would like to wait for any of several possible requests so that the
remote procedure could be shared by many remote procedures (that is,
one RP_guard procedure that will call on many different functions). The
select statement does this; it associates with each accept a Boolean
condition. If the Boolean condition is false when the select is executed,
the corresponding accept cannot be done.

select [when B1:] accept E1(…) do S1 end
or when B2:] accept E2(…) do S2 end
…
or [when Bn:] accept En(…) do Sn end
else R
end;

If the else is omitted, and none of the Booleans are true, an error is
generated. If more than one Boolean is true, the systems is assumed to
choose among the possibilities according to a fair internal policy.

What characterizes a “fair internal policy?” Which process is given the
CPU next? This is the province of schedulers.

