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I n t e r p r o ce s s  S ynch ro n i z a t i o n  a nd  I n t e r p r o ce s s  S ynch ro n i z a t i o n  a nd  
Co m m un i c a t i o nCo m m un i c a t i o n   

 
 
Goal 

To understand how these are implemented we need to look at what 
they are and why they are necessary. 
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Parallelism 
 

 
What Is It? 

This is having statements execute simultaneously.  Why?  The 
system may have multiple CPUs or may have special units such as Floating 
Point Units which can compute at the same time as the CPU. Problem:  
some statements must be completed before others may be begun; for 
example, consider 

1  a: = x+y 
2  b: = z+1 
3  c: = a-b 
4  d: = c+1 

1 and 2  must finish before 3 can begin, but 1 and 2 can be done 
independently.  This is a precedence constraint . 
 
Precedence graphs  and process flow graphs are used to examine 
processes for parallel work. 
example: The following two graphs represent the same thing: 

precedence graph
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process flow graph

 
These are really equivalent (one focuses on statements, the other on 
processes).  These graphs must be acyclic. 
 
Bernstein conditions 

These describe when statements can be executed in parallel.  
Define 



ECS 150 (Operating Systems)  Synchronization & Communication 

Spring Quarter 2008  3 

R(Si) = { variables whose value is referenced in statement si } 
W(Si) = { variables whose value is changed in statement si } 

For example, in the example above 
R(S1) = {x, y} R(S2) = {z} R(S3) = {a, b} R(S4) = {c} 
W(S1) = {a} W(S2) = {b} W(S3) = {c} W(S4) = {d} 

precedence graph: 
Start

S1 S2

S3

S4  
Now, Si and Sj may be done concurrently if the Bernstein conditions hold: 

W(Si) … W(Sj) = ∅ and R(Si) … W(Sj) = ∅ and W(Si) … R(Sj) = ∅ 
In the above example, this agrees with the intuition. 
 
Parallel Programming Constructs 
fork, join, quit 
The earliest parallel constructs were fork and join.  Fork looks like fork 
label and splits the process into two, one of which begins at label and 
the other which falls through. 
example: 

 fork L; 
 a := x+y; 
 … 
L: b := z+1; 

Join merges processes and has the form  join count label; count is 
decremented and if zero, there is a branch to label:  That is, 

count := count - 1; 
if count = 0 then goto label; 

(Note: in some texts, process terminates instead of branches.) 
Quit terminates process. 
example: count =2; 

 fork dopar; 
 a := x+y; 
 go to donepar; 
dopar: b := z+1; 
donepar: join count, cont; 
 quit; 
cont: c := a-b; 
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 d := c+1; 
As a second example, the program equivalent to the process flow graph 
above is: 

 t6 := 2; 
 t8 := 3; 
 S1; fork p2; fork pt; fork p7; quit 
p2: S2; for L p3: fork p4; quit; 
p5: S5; join t6, p6; quit 
p7: S7; join t8, p8; quit 
p3: S3; join t8, p8; quit 
p4: S4; join t6, p6; quit 
p6: S6; join t8, p8; quit; 
p8: S8; quit 

where Si is the program for pi. 
Strengths: simple, powerful, easy to derive from precedence graphs 
Weakness:  clumsy, lots of gotos and goto like structures. 
 
parbegin,parend 

Dijkstra suggested these as a goto-less mechanism; they bracket 
statements (or blocks of statements) to be done in parallel. 
example: 

parbebin 
 a: = x+y; 
 b: = z+1; 
parend 
c: = a-b; 
d: = c+1; 

Strength:  easy to read, uses principles of modular programming, etc. 
Weakness:  not so powerful as the fork-join-quit set. 

To see why, consider the idesa of proper nesting.  Let 
S(a,b) represent the serial execution of processes a and b 
P(a,b) represent the parallel execution of processes a and b 

Then a process flow graph is properly nested if it can be described by P, 
S, and functional composition. 
example:  the first example's process flow graph is 

S

p1 p2

p3

p4
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which is S(S(P(p1, p2), p3, p4) 
But the second example cannot be so described. 
Claim The second example is not properly nested. 
Proof For something to be properly nested, it must be of the form S(pi, 

pj) or P(pi, pj) at the most interior level.  
Clearly the example's most interior level is not P(pi, pj) as 

there are no constructs of that form in the graph. 
In the graph, all serially connected processes pi and pj have at 

least 1 more process pk starting or finishing at the node nij 
between pi and pj; but if S(pi, pj) is in the innermost level, there 
can be no such pk (else a more interior P or S is needed, 
contradiction).  Hence, it's not S(pi, pj) either. 

Clearly, parbegin-parend works only when the process flow graph is 
properly nested. 
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The problem with process interaction 

This is best illustrated by an example, called the bounded buffer 
producer/consumer problem; we use a buffer of n items. 
 var buffer: array [0..n-1] of item; 
  in, out: 0...n-1; 
  counter: 0...n 
producer: repeat 
   make next p; 
   while counter = n do (* nothing *); 
   buffer [in] := next p; 
   in := (in+1) mod n; 
   counter: = counter + 1; 
  until false; 
consumer: repeat 
   while counter = 0 do (* nothing *); 
   next: = buffer[out]; 
   out: = (out + 1) mod n 
   counter: = counter - 1; 
  until false; 

If each loop is executed separately, this works fine; but if 
intermingled … 

Suppose counter is 3, and loot at counter: = counter + 1  and 
counter: = counter - 1.  These might compile into the following: 
counter: = counter + 1 counter: = counter - 1 
C1 r1: = counter; P1 r2 : = counter; 
C2 r1: = r1 + 1; P2 r2: = r2 - 1; 
C3 counter: = r1; P3 counter: = r2; 
depending on how these sets of statements intermingle, counter could 
have one of three values: 

P1 P2 C1 C2 P3 C3 counter = 4 
P1 P2 C1 C2 C3 P3 counter = 6 
P1 P2 P3 C1 C2 C3 counter = 5 

Why?  2 processes manipulated counter simultaneously.  Clearly, we 
need to ensure just one process does. 
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The Critical Section Problem and Its Solutions 
 
 
Critical Section Problem 

A critical section is a  block of code that only one process at a time 
can execute; so, when one process is in its critical section, no other 
process may be in its critical section. 
Problem: design a protocol to solve this problem. 
Generic description of framework:  Every solution will have the following 
layout: 

entry section 
critical section 
exit section 
remainder section 

 
Requirements to be a Solution 
1. Mutual exclusion; at most one process in the critical section at a time. 
2.  Progress ; if no process in the critical section, and some wish to enter, 

then only processes not in remainder section can take part in deciding 
whichj one enters. 

3.  Bounded Wait; a bound on the number of times other processes are 
allowed to enter the critical section after a process asks to enter its 
critical section and before it is allowed to. 

Assumption made implicitly:  each process runs at nonzero speed, but no 
assumption is made as to relative speed. 
 
Two-Process Solutions 

We will use processes p0 and p1, also known as pi and pj, with 
either i = 0 and j = 1 or with i = 1 and j = 0.  The current process is 
always pi; the other one, pj. 
 
Analyses of Sample Solutions 

Our goal is to learn how to analyze a proposed solution.  The best 
way to do this is by examples: 

 
Example 1. 

var turn: 0..1; (* whose turn it is *) 
while turn ≠ i do … entry section 
 (* nothing *); 
  … critical section 
turn := j; … exit section 

Is mutual exclusion satisfied?  As turn can have only 1 value, it is. 
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As for progress, note the processes enter their critical section in alternate 
order; hence progress is not met. 

 
Example 2. 

var inCS: array[0..1] of booleans := false; 
  (* who is in critical section *) 

while inCS[j] do … entry section 
 (* nothing *); 
inCS[i] := true; 
  … critical section 
inCS[j] := false; … exit section 

Is mutual exclusion satisfied? Suppose pi and pj both execute the while 
statement at the same time.  As both inCS[i] and inCS[j] are 
false, both proceed through, set inCS[i] and inCS[j] to true, and 
enter their critical section.  So mutual exclusion is violated. 

 
Example 3. 

var interested: array[0..1] of booleans := false; 
 (* who wants to enter critical section 
*) 

interested[i] := true; … entry section 
while interested[j] do 
 (* nothing *); 
  … critical section 
interested[j] := false; … exit section 

Is mutual exclusion satisfied? The only way into the critical section is if 
interested[j] is false; but if a process is in the critical section, 
interested[j] must be true.  Hence at most one process can be in 
the critical section at a time, proving mutual exclusion holds. 

Is progress satisfied?  Suppose both processes hit the while loop at the 
same time.  Then they loop forever.  So progress is not satisfied. 

 
Example 4. 

var interested: array[0..1] of booleans := false; 
 (* who wants to enter critical section 
*) 

turn: 0..1; 
interested[i] := true; … entry section 
turn := j; 
while interested[j] and turn = j do 
 (* nothing *); 
  … critical section 
interested[j] := false; … exit section 

Is mutual exclusion satisfied?  Note first that pi enters its critical section 
only if interested[j] is false and turn is i.  For both to be in the 
critical section, interested[i] and interested[j] are both true.  
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Both could not have passed through the while loop at the same time 
(as turn is i or j but not both), so one did the loop while the other 
did one of the preceding lines.  Say pi does the preceding lines and pj 
is in the loop.  After doing the first line in the entry section, 
interested[i] and interested[j] are both true, and turn is j, so 
pi stops at the while and the next time pj goes, it enters the critical 
section; in short, at most one process can be in the critical section.  So 
mutual exclusion holds. 

Are bounded wait and progress both satisfied?  First, notice that pi is 
blocked from entering the critical section only if it is stuck at the while 
loop, which means that interested[j] is true and turn is j.  If pj is 
not in the entry or critical sections, interested[j] is false and pi 
goes in.  If pj is at the while statement in the entry section, turn is 
either i or j, and the process with index the same as turn will go in.  
Now, once pi leaves the critical section, interested[i] is false and 
pj can go in (or vice versa).  If pj resets interested[j] is true, then 
turn will be set to i and pi goes in.  This means that only the 
processes in the entry, exit, or critical sections affect which process 
goes in, giving progress.  Further, at most one additional entry by pj 
will occur if both request entry at the same time, so bounded waiting 
holds. 

Hence this is a solution to the critical section problem; in fact, it is 
Peterson's Solution. 

 
N-process Solution 

Lamport's Bakery Algorithm (see handout) is one solution. 
Is mutual exclusion satisfied?  let Pi be in the critical section.  If Pk (k ≠ i) 

has chosen number[k] ≠ 0, (number [i],i) < (number [k],k).  Now, 
suppose Pk trying to enter,  and Pi is in the critical section.  When Pk 
runs with j = i, it sees number [i] ≠ 0 and (n[i], i) < (n[k], k) and  
therefore  loops. 

Are bounded wait and progress satisfied?  Yes, as processes enter the 
critical section on FIFO basis. 

 
Hardware Solutions 

The critical section problem is easier to solve using hardware 
instructions, for example the atomic test-and-set instruction: 
 function TaS(var Lock: boolean): boolean 
 begin 
  TaS: = Lock; 
  Lock = True; 
 end; 
which is used to solve the N-process problem (see handout) 
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All of the above solutions (software and hardware) have problems: 

1. busy waiting; the CPU does nothing in such a way that no-one else can 
use it 

2. complex, not easily generalizable; for example, Peterson's solution 
does not easily generalize to N processes. 

To solve these, we can define other hardware constructs.  For example: 
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semaphores 
 
semaphores 

This is a non-negative integer variable S that can be operated on in 3 
ways. 
1. initialization operation sets initial value atomically: 

S := n; 
2. signal or V operation increments value atomically: 

S := S + 1; 
3. wait or P operation blocks until S is non-zero, then decrements value; 

the whole thing is atomic: 
while S = 0 do block; 
S := S - 1;  

 
Mathematically, let: 

ns number of signals 
nw number of completed wait operations (i.e., not suspended) 
iv initial value 
vs value of semaphore 

Then for a semaphore mutex, the definitions give:  
vs(mutex) = iv(mutex) + ns(mutex) - nw(mutex) 

but as vs ≥ 0, we also have 
nw(mutex) < ns(mutex) + iv(mutex) 

Both of these are always true, and hence are invariants.   So, for mutual 
exclusion: 

 P(mutex); (* critical section  *); V(mutex); 
If the initial value of mutex is 1, then the second invariant gives 

nw(mutex) < ns(mutex) + 1 
meaning that at most 1 process will be in the critical section at a time 
(giving mutual exclusion). 
 
2)  Synchronization: 
 A B 
 … … 
 P(mutex) V(mutex) 
 … … 
If the initial value of mutex is 0, process A will block at P(mutex) until 
process B reaches V(mutex); and nw(mutex) ≤ ns(mutex). 
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example: Recall the precedence graph 
precedence graph

 S1

S2 S5 S7

S3 S4

S6

S8

S1;

parbegin

!begin S2; V(a); V(b); end;

!begin P(a); S3; V(c); end;

!begin P(b); S4; VB(d); end;

!begin S5; V(e); end;

!begin P(d); p(e); S6; V(f); end;

!begin S7; V(g); end;

!begin P(c); P(f); P(g); S8; end;

parend;

a
b

e

d

c

f

g

 
 
The implementation is usually First-In-First-Out queues; the first process 
blocked is the first one allowed to continue. 
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Testing Synchronization Primitives 
 
Bounded Buffer Problem 

Processes communicate through a buffer of fixed length.  The 
producer inserts items and the consumer extracts them. 
Problem:  prevent buffer overflow or underflow. 

Assume: 
n size of buffer  
d number of items deposited 
e number of items extracted 

Obviously, 0 ≤ d - e ≤ n must hold. 
From the order of operations: 

in the producer: ns(full) ≤  d ≤  nw(empty) 
in the consumer: ns(empty) ≤  e ≤  nw(full) 

Hence 
 d ≤ nw(empty) ≤ ns(empty) + n ≤ e + n 
 e ≤ nw(full) ≤ ns(full) ≤ d 

Combining, we have 
e ≤  d ≤ e + n 

 
Readers - Writers Problem 

Here, a file is to be shared among several concurrent processes, each 
of which is only interested in reading (the readers) or writing (the 
writers). 
Problem: to enforce Bernstein's conditions. 

The nub is that writers need exclusive access to the file.  This 
suggests two variants, based on priority of the writers: 
The first readers-writers problem:  Readers have priority.  Hence even if a 
writer is waiting for the file, a new readers may start reading the file 
provided another reader is also currently reading the file.  This means that 
writers may starve 
The second readers-writers problem:  Writers have priority.  Hence once a 
writer is waiting for the file, no new readers may start reading. 
A solution to the first problem is in the handout. 
 
The Dining Philosophers Problem 

Five philosophers are dining at a circular table.  They have five plates 
(one in front of each philosopher) and five forks, one between each plate.  
They alternate between thinking and using both their right and left forks 
to eat. 
Problem: prevent starvation and deadlock. 
Example 1 of a Potential Solution: 
Each philosopher picks up her left fork first: 
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 var  fork:  array [0..4] of semaphore: = 1,1,1,1,1 
 repeat     (* philosopher i *) 
  P(fork[i]); 
  P(fork[i + 1 mod 5]); 
   (* eat *) 
  V(fork[i]); 
  V(fork[i + 1 mod 5]); 
   (* think *) 
 until false 
This leads to deadlock. 
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Abstraction 
 
Problem with Semaphores 

The problem is similar to that of fork/join/quit.  P and V are too low-
level.  Also, semaphores combine blocking with counting these are distinct 
functions, which could be kept separate.  Finally, they are murder to 
debug; try typing a P for a V and then figure out where you did it! 
Solution:  build some higher level constructs 
 
Abstract Datatypes 

The theory of programming languages gives a technique to do this.  A 
class is a module giving representation of an abstract data type 
example:    type stack = class 
   var stack: array [1.. 100] of integer; 
    top: integer; 
   procedure entry push(x: integer); 
   begin 
    if (checkpush()) then 
    begin 
     stack[top] := x; 
     top := top + 1; 
    end; 
   end; 
   procedure entry pop(var x: integer); 
   begin 
    if (checkpop()) then 
    begin 
     x := stack[top]; 
     top := top - 1; 
    end; 
   end; 
   function checkpush(): boolean; 
   begin 
    checkpush := top <=100; 
   end; 
   function checkpop() = boolean, 
   begin 
    checkpop := top > 1; 
   end;  (* initialization *) 
   begin 
    top := 1; 
   end; 
Then you declare an instance of this type by 

var calcstack: stack; 
The type is the template, or definition; the instance is a variable of that 
type. 
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Monitors (Hoare) 
Monitors are defined like a class, but they guarantee mutual exclusion; 

only 1 process may be active in the monitor.  So, when using one: 
1. access to the encapsulated resource should be possible only via the 

monitor 
2. procedures in the monitor are mutually exclusive; when 1 process is 

executing within the monitor, other processes calling procedures within 
the monitor are delayed until that process leaves the monitor 

So far, these are similar to critical regions.  But to synchronize, define 
condition variables and 2 operations: 
wait  on a condition variable (x.wait) - block process, put it on queue 

associated with condition x 
signal  on a condition variable (x.signal) - if any process is blocked on 

condition x, unblock one of them; if not, ignore the signal. 
Note that the signal operation is memoryless (that is, if no-one is blocked, 
the signal disappears and the next one to try to wait will wait); different 
than semaphores (not memoryless). 
Problem with signal:  suppose P1 is blocked on x, and P2 signals on x.  
Since only one process can be in the monitor at a time, one must block 
until the other is done.  Two methods are followed: 
1. P2 waits until P1 either leaves monitor or waits for a condition (Hoare).  

This gives simpler, more elegant proofs. 
2. P1 waits until P2 either leaves monitor or waits for a condition 

(Lampson & Redell).  The programming language Mesa uses this. One 
problem is that the “logical” condition for which P1 was waiting may 
no longer be true when P2 leaves monitor; hence under this scheme,  
the monitor must say 

while not B do x.wait; 
 and not 

if not B do x.wait; 
 
example:  Binary semaphore with a monitor. 

semaphore: monitor; 
 var busy: boolean; 
  notbusy: condition 
 procedure entry P; 
 begin 
  if busy then 
   notbusy.wait; 
  busy: = true; 
 end; 
 procedure entry V; 
 begin 
  busy: = false; 
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  notbusy.signal; 
 end; 
 begin 
  busy:= false; 
 end. 

example: producers/consumers problem (see handout) 
example: first readers-writers problem (see handout) 
 
Implementation:  Here we consider Hoare's.  We must assure: 
1. execution of procedures in the monitor is mutually exclusive; 
2. wait blocks the current process on corresponding condition 
3. if a process exits or is blocked, and other processes are waiting to 

enter the monitor, one must be selected; priority goes to those 
blocked after issuing a signal, then those waiting to get in go, then 
those blocked on a condition variable. 

4. if a process issues a signal, it must determine if any process is waiting 
on the corresponding condition; if so, current process is suspended 
and a waiting one activated; else, the signaller continues. 

See handout for how it is done. 
 
Priority Waits 

 Recall that signals restart processes in FIFO order, but sometimes 
this is not good; for example, think of waiting for a specific time of day.  
Hence define priority wait as: 

c.wait(p) 
where p is an integer and c a condition variable.  If more than one process 
waiting on c is signalled, the one with the lowest value of p resumes. 
example: alarm clock (see handout). 
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Event Counters and Sequencers 
 
These allow synchronization without mutual exclusion (but they can 

provide mutual exclusion too).  There are two parts: 
Event counters  are non-decreasing integers beginning at 0.  Three 

operations (here, E is an event counter): 
advance(E) E := E + 1 atomically; indicates an event of 

interest occurred 
read(E) return(E); so, if E is n, at least n advance(E) 

operations occurred 
await(E,v) block until E has value v so this continues only when 

at least v advance(E) operations occurred.  
Sequencers also are non-decreasing integers beginning at 0.  These are 

used to order events, and one operation only is defined (here, S is a 
sequencer): 

ticket(S) olds := S; 
 S := S + 1; 
 return(oldS); 
 executed atomically; this requires mutual exclusion 

so no two calls will return the same value. 
Mutual exclusion: await (E, ticket (S)); 
 … 
 advance(E); 
example: producer-consumer problem (see handout) 
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Shared Memory Synchronization 

  
There are some cases where none of the above mechanisms are 

satisfactory: 
1. Security considerations may prevent sharing memory 
 example: each process must run in strict isolation, in its own logical 

space with all interactions under its own  control; this is not possible 
with monitor, as any process with access to the monitor can get global 
data stored within the monitor. 

2. It may not be possible to share memory 
 example: in a distributed system, each processor may have its own 

local memory and so processes on different processors cannot share 
data. 

In these cases a mechanism other than those based on shared memory 
must be used; these new schemes are called message-based 
synchronization schemes. 
 
Interprocess Communication (IPC) 

 Two primitives: 
send(p, msg) transfers message msg to process p; special 

(implementation-dependent) values of p can be used to 
indicate that the message goes to all processes; this is 
called broadcast. 

receive(q, msg) obtains message msg from process q; special 
(implementation-dependent) values of q can be used to 
indicate that the message goes to all processes. 

The answers to four basic questions characterize send/receive 
primitives: 
1. Does the sender wait until its message is accepted by the recipient, or 

does it continue processing? 
• if the sender blocks, the send is called blocking or synchronous 
• if the sender may proceed while the message is being delivered, 

send is non-blocking or asynchronous 
2. What happens when a receive call is issued, but there is no message 

waiting? 
• if the process waits for a message to arrive, the receive is called 

blocking or synchronous 
• if the process continues, the receive is called nonblocking or 

asynchronous 
A related question is the size of the (system) queue used to hold 
messages in transit.  This queue, associated with the connection or link 
between the two processes,  has a capacity for a certain number of 
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messages; the capacity is  a property of the link.  There are three 
different types of implementations: 
1. A zero capacity link:  the link cannot have any messages waiting; 

the sender must wait until the recipient gets the message, or the 
message is lost.  It is most useful when the process transmits the 
message from a buffer within the process (called rendezvous). 

2. A bounded capacity link: If the capacity is n, then at most n 
messages can be stored in the associated queue.  If the queue is 
not full, the message is copied into the queue.  If it is full, the 
sender must wait (or the message will be lost). 

3. An unbounded capacity link:  any number of messages can be 
stored in the associated queue. 

3. Must the sender specify exactly 1 recipient, or can messages be sent 
to any (or all) of a number of recipients? 

4. Must the recipient specify exactly 1 sender, or can messages be 
accepted from any (or all) of a number of senders? 

 
Naming 

There are two types: 
1. The sender or recipient is specified; called explicit naming or direct 

communication. 
 Relevant properties: 

• the link between pairs of processes wanting to communicate is 
established automatically; the processes need to know each other's 
identity only. 

• each link is associated with exactly 2 processes. 
• between each pair of communicating processes, there is exactly 

one link 
• the link is bidirectional 

 example: the producer/consumer problem (see handout) 
A variant of this scheme is that the sender specifies the recipient, but 
the recipient gets messages from any sender; on return of the receive 
call, the process argument in the call is set to the name of the sending 
process 
Problem:  lack of modularity, as if a process changes its name, all 
references to it must also be changed. 

2. Messages are sent to mailboxes or drop boxes; called implicit naming 
or indirect communication. 

 Relevant properties: 
• there is a link between a pair of processes only if there is something 

shared (like  a mailbox) 
• a link is associated with any number of processes 
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• between each pair of communicating processes, there may be many 
links (specifically, 1 per mailbox) 

• a link may be unidirectional or bidirectional 
example: the producer/consumer problem (redo handout) 
Problem:  If two processes do a receive on a mailbox at the same time, 
who gets the message?  Three possibilities: 
1. Each link is associated with exactly 2 processes so the problem 

should never arise. 
2. Only 1 process at a time may do a receive on a particular mailbox; 

in this case, the mailbox is called a port. 
3. The system selects which process (but not both of them!) gets the 

message. 
How do you create a mailbox? It can be done: 
• within the process, by declaring the mailbox (like you declare a 

variable to create it); that process gets all messages sent to the 
mailbox, and when the process dies, the mailbox goes away. 

• by the operating system, which provides system calls to create and 
delete a mailbox.  Usually the ability to receive messages from a 
particular mailbox can be passed to another process via system 
calls.  May require garbage collection. 

 
Other issues include: 
• communications delay; onbe solution is to send until a reply 

(acknowledgement) is received. 
 example: Toth, internet higher level protocols (SMTP, TCP) 
• process termination before message processed 

1. if a recipient process P1 is waiting for a message from a terminated 
process P2 using a blocking receive, P1 is blocked forever. 

2. if a sender process P1 sends a message to a terminated process P2 
using a blocking send on a zero-capacity link, P1 is blocked forever. 

In both cases, the solution is to notify P1 that P2 has terminated, or 
terminate P1 

• messages lost in transfer 
1. The operating system may be responsible for detecting this and 

retransmitting the message or notifying the sender. 
2. The sender may detectthis; it can resend the message. 
Timeouts are used to detect this; one problem is they may be too 
short, so messages are unnecessarily retransmitted. 

• messages may be garbled or altered in transit 
These can be detected by using message integrity codes such as 
checksums or CRCs. 
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Remote Procedure Calls (RPC) 
 
 

The send/receive mechanism has the same problems as semaphores; 
they are too low-level, so the user must suce them like P and V and 
abandon the idea of procedures.  Remote procedure calling provides this 
procedural interface. 
 
Programmer view 
 A remote procedure call is just like a regular procedure call, except the 
procedure is in a separate address space and doesn't share global 
variables 
 
Implementation view 
 Each remote procedure needs a separate process ; this process can be 
created by the call to the procedure, or it can be a permanent process 
(below, called an RP_guard) that reads parameters, runs the remote 
procedure, and returns its result using  send and receive primitives: 

caller process RP_guard process

send(RP_guard, parameters) receive(caller, parameters)

RP(parameters)

send(caller, results)receive(RP_guard, results)  
 
Example: the programming language ADA™ 

The accept statement designates a segment of code as a remote 
procedure: 

accept name(formal_parameter_list) do proc-body end 
To call, the caller uses 

name(actual_parameters) 
• If the caller issues a call before the process containing the definition of 

the called function hits the corresponding accept, the caller blocks.  
When the process with the called function hits the accept, it executes 
the statement body, and sends the results to the caller.  Then both go 
on. 

• If the process containing the definition of the function hits accept 
first, it blocks until the caller issues the corresponding remote 
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procedure call; it then proceeds, sends the result to the caller, and 
goes on. 

Thus the accept mechanism is like blocking receive with explicit naming.  
We would like to wait for any of several possible requests so that the 
remote procedure could be shared by many remote procedures (that is, 
one RP_guard procedure that will call on many different functions). The 
select statement does this; it associates with each accept a Boolean 
condition.  If the Boolean condition is false when the select is executed, 
the corresponding accept cannot be done. 

select [when B1:] accept E1(…) do S1 end 
or when B2:] accept E2(…) do S2 end 
… 
or [when Bn:] accept En(…) do Sn end 
else R 
end; 

If the else is omitted, and none of the Booleans are true, an error is 
generated.  If more than one Boolean is true, the systems is assumed to 
choose among the possibilities according to a fair internal policy. 
 
What characterizes a “fair internal policy?”  Which process is given the 
CPU next? This is the province of schedulers. 


