
ECS 150, Operating Systems Fall Quarter 2008

Sample Midterm

1. What are the values of the integer variables x and y when the following program completes? (If either variable
could have more than one value, say why.)

y = 2 ;
parbegin

x = y ∗ 2 ;
y = 6 ;

parend ;

Answer: By the Bernstein conditions, the value of x will be undefined, since it uses a variable that is both read
and written concurrently. The value of y will be 6, since it is written to only at one place in the concurrent
statements.

2. Is the following true or false? Justify your answer. “When several processes access shared information in
primary storage, mutual exclusion must be enforced to prevent the production of indeterminant results.”

Answer: This statement is false because it is too general. If many processes are reading shared data, and not
writing it, mutual exclusion is unnecessary. If however any process does alter that data, then mutual exclusion
becomes necessary.

3. Process A should finish before process B starts, and process B should finish before either of processes C or D
start. Show how these processes may use two semaphores to provide the necessary synchronization.

Answer: Define two semaphores Adone and Bdone, both of which are initialized to 0. Have B, C, and D execute
as their first instructions down(Adone), down(Bdone), and down(Bdone), respectively. Have A execute as its
last instruction up(Adone); this enables B to proceed past its first instruction. Have B execute two up(Bdone)s as
its last two instructions; this enables C and D to proceed past their first instructions. This arrangement provides
the necessary synchronization.

4. A bounded semaphore s is a counting semaphore that cannot exceed a given value smax > 0. The corresponding
up and down operations are:

up(s): wait until s < smax; then increment s by 1

down(s): wait until s > 0; then decrement s by 1

Write a monitor to implement bounded semaphores. (Hint: assume the semaphore is to be initialized to the
constant SINIT and the maximum value is SMAX.)

t y p e d e f monitor {
/∗ s c o u n t i s t h e i n t e g e r v a l u e o f t h e semaphore ; i f t h i s i s t o o b i g

and t h e p r o c e s s t r i e s t o up i t , t h e p r o c e s s w i l l b l o c k on t o o b i g ;
s i m i l a r l y , i f t h e v a l u e i s t o o s m a l l and t h e p r o c e s s t r i e s t o down

i t , t h e p r o c e s s w i l l b l o c k on t o o s m a l l . ∗ /
i n t s c o u n t = 0 ;
c o n d i t i o n t o o b i g , t o o s m a l l ;

/∗ s t r a i g h f o r w a r d i m p l e m e n t a t i o n o f up ∗ /
vo id entry up (vo id)
{

/∗ i f t o o big , w a i t u n t i l ok ∗ /
whi le (s c o u n t >= SMAX)

t o o b i g . wait ;
/∗ i n c r e m e n t and n o t i f y someone

w a i t i n g f o r t h e semaphore t o be
nonzero t h a t i t i s ∗ /

Version of October 28, 2008 at 7:44am Page 1 of 2

ECS 150, Operating Systems Fall Quarter 2008

s c o u n t += 1 ;
t o o s m a l l . s i g n a l ;

}

/∗ s t r a i g h f o r w a r d i m p l e m e n t a t i o n o f down ∗ /
vo id entry down (vo id) ;
b e g i n

/∗ i f t o o smal l , w a i t u n t i l ok ∗ /
whi le (s c o u n t <= 0)

t o o s m a l l . wait ;
/∗ decremen t and n o t i f y someone

w a i t i n g f o r t h e semaphore t o be
l e s s than SMAX t h a t i t i s ∗ /

s c o u n t −= 1 ;
t o o b i g . s i g n a l ;

} boundedsemaphore ;

5. Suppose a scheduling algorithm (at the level of short-term scheduling) favors those programs which have used
little processor time in the recent past. Why will this algorithm favor I/O bound programs and yet not perma-
nently starve CPU bound programs?

Answer: Since I/O bound jobs use little processor time due to their blocking for I/O, they will be favored over
CPU bound jobs, which use large amounts of CPU time. However, if I/O bound jobs repeatedly use the processor
and thereby prevent CPU bound jobs from acquiring it, then the amount of processor time used by CPU bound
programs in the recent past drops; eventually it will be low enough so the CPU bound process gets the CPU.
Hence this algorithm will not starve CPU bound programs.

6. Assume you have been given the following jobs with the indicated arrival and service times:

name arrival time service time
A 0 3
B 2 5
C 4 2
D 6 1
E 8 4

(a) When, and in what order, would these jobs run if the scheduling algorithm were first come first serve?

(b) When, and in what order, would these jobs run if the scheduling algorithm were shortest job next?

(c) When, and in what order, would these jobs run if the scheduling algorithm were round robin with a quan-
tum of 2? Assume that if events are scheduled to happen at exactly the same time, that new arrivals precede
terminations, which precede quantum expirations.

Answer:

(a) A (from 0 to 3), B (from 3 to 8), C (from 8 to 10), D (from 10 to 11), E (from 11 to 15)

(b) A (from 0 to 3), B (from 3 to 8), D (from 8 to 9), C (from 9 to 11), E (from 11 to 15)

(c) A (from 0 to 2), B (from 2 to 4), A (from 4 to 5), C (from 5 to 7), B (from 7 to 9), D (from 9 to 10), E
(from 10 to 12), B (from 12 to 13), E (from 13 to 15)

Version of October 28, 2008 at 7:44am Page 2 of 2

