
A Brief History of Operating
Systems

March 28, 2022 ECS 150, Operating Systems 1

Outline

• First generation of computing
• Second generation of computing
• Third generation of computing
• Fourth generation of computing

March 28, 2022 ECS 150, Operating Systems 2

First Generation of Computing

• Hardware only
• Programmers wrote, ran programs and operated system
• Programmers could halt execution, modify programs and data, etc.

• Programming done in binary or rewiring plug boards
• Then punch cards introduced to make life easier

March 28, 2022 ECS 150, Operating Systems 3

Processor Utilization and Throughput

• “Open shop” approach
• If you sign up for 1 hour, you get it — even if you do not need it all

Assume:
• Signup time is 15 min blocks
• Input time 0.3 min
• Output time 0.5 min
• Execution time 1.0 min

• Processor utilization = execution time / total time = 1 min / 15 min ≈ 7%
• Throughput = number of jobs run / total time = 1 job / 15 min = 4 jobs/hr

March 28, 2022 ECS 150, Operating Systems 4

Second Generation of Computing

• Use of transistors
• Separation of operators, programmers
• Programmers wrote programs on punch cards using assembly language,

FORTRAN
• Operators ran jobs

March 28, 2022 ECS 150, Operating Systems 5

Processor Utilization and Throughput

• Now jobs can be run one after the other
Assume:
• Input time 0.3 min
• Output time 0.5 min
• Execution time 1.0 min

• Processor utilization = execution time / total time = 1 min / 1.8 min ≈
55%
• Throughput = number of jobs run / total time = 1 job / 1.8 min = 33

jobs/hr

March 28, 2022 ECS 150, Operating Systems 6

Batch Processing

• Copy jobs from cards to tape using satellite computer
• Main computer runs tape, output collected on another tape
• Copy output from tape to paper using satellite computer

March 28, 2022 ECS 150, Operating Systems 7

Processor Utilization and Throughput

Assume:
• Input time 0.3 min
• Output time 0.5 min
• Execution time 1.0 min

• And for the batching:
• Delivery time of 50 jobs: 30 min
• Transfer from cards to tape: 15 min
• Mount tape: 5 min
• Execution time (1 min / job): 50 min
• Print output tape: 25 min
• Manual separation of job outputs from printer: 15 min

March 28, 2022 ECS 150, Operating Systems 8

Processor Utilization and Throughput

Key numbers:
• Batch execution time: 50 min
• Mounting time: 5 min
• Number of jobs executed: 50 jobs
• Execution time 1.0 min

• Processor utilization = execution time / (mounting time + execution
time) = 50 min / (5 + 50) min = 50 / 55 ≈ 91%
• Throughput = number of jobs run / (mounting time + execution time)

= 50 jobs / (5 + 50) min = 50 jobs / 55 min ≈ 55 jobs / hr

March 28, 2022 ECS 150, Operating Systems 9

Brilliant Idea: Supervisory Programs

• Computers are fast at doing things people do, so why not have them
do the job scheduling?
• First serious but informal discussion of writing such a supervisory

program in 1953 in Herb Grosch’s hotel room during the Eastern Joint
Computer Conference
• Intended to address idle time and work required to control I/O devices

March 28, 2022 ECS 150, Operating Systems 10

Led to First Operating System

• The Input / Output System, for the IBM 701
• Written at General Motors
• Provided a set of routines for accessing I/O devices
• If, at end of a job, the job branched back to it, it would accept and load next

job

• Benefits
• Offline operations easier
• Changing I/O devices now just involved changing the driver in the set of

routines and not in each program

March 28, 2022 ECS 150, Operating Systems 11

Another Brilliant Idea: Buffering

• Overlap CPU, I/O
• Idea: keep both CPU, I/O devices busy simultaneously
• Means I/O must be done independently of CPU

• First done in SHARE operating system
• Written by SHARE, IBM’s user group, for IBM 709
• Improved speed and automated much of operator’s job
• Operators had to load, unload cared and tapes
• Little error recovery

March 28, 2022 ECS 150, Operating Systems 12

Rise of Disk Operating Systems

• Resident Loader
• Loads both user, system programs into memory; readies them for execution;

passes control to them
• Programs return control to operating system
• Process repeats

• Job Control Language
• Users used this to inform systems of needs of jobs (memory, printers, etc.)

• Device Independence
• Came from device support for many different devices

March 28, 2022 ECS 150, Operating Systems 13

Atlas System

• First computer designed to support operating system
• Several hardware innovations:
• Extracodes: special instructions causing traps to invoke special software

routines
• Notion of virtual memory: one-level store using large disk or drum as backup

memory for main store
• Interrupts: used to determine when external event occurs

March 28, 2022 ECS 150, Operating Systems 14

Interrupt Examples

• Alarm clock: at certain time,
invoke the following software
routine:
Disable alarm clock interrupt

Save program status

Invoke requested routine

Reset alarm clock interrupt

Reset program status

Resume normal processing

• Device: input occurs; invoke the
following software routine:

Disable device interrupt

Save program status

Invoke appropriate routine

Reset device interrupt

Reset program status

Resume normal processing

March 28, 2022 ECS 150, Operating Systems 15

Third Generation of Computing

• Use of integrated circuits
• Multiprogramming: where many jobs run interleaved on one machine
• Spooling: buffering jobs (just like I/O); put jobs on disks to enable quick input

and moving data and instructions between the disks and CPU
• Monitor can schedule jobs as disks can be accessed in random order

• Better than tapes, which must be accessed sequentially
• Computation of one job, I/O of another, can overlap

March 28, 2022 ECS 150, Operating Systems 16

Examples

• First implemented in EXEC II, the operating system for UNIVAC 1107
• Ran faster than users could load cards
• Performance in time between submission, resubmission of a job, 33%

circulated in under 5 min, processor utilization 90%

• Burroughs 5000 Master Control program
• Used priorities to determine which job to run
• All user programs written in ALGOL or COBOL

• No assemblers available

March 28, 2022 ECS 150, Operating Systems 17

Customer Service and Compatibility

• IBM System/360 family used these
• Extensive customer service, support
• Very powerful (for the time) operating system, OS/360

• See Fred Brooks’ book The Mythical Man-Month
• Upward compatibility for all systems in IBM 360 family
• Powerful job control language

March 28, 2022 ECS 150, Operating Systems 18

Problems Introduced

• Protection required
• To prevent one job from overwriting others
• To prevent job from executing illegal instructions, causing system to crash
• To prevent infinite use of the CPU
• To prevent one job from interfering with I/O of another job

March 28, 2022 ECS 150, Operating Systems 19

Hardware Solutions

• Illegal instructions cause trap to prevent system crash
• Special fence register separates operating system from jobs
• Crossing it triggers trap

• Upper, lower bounds registers delimit memory allocated to current
job
• Crossing beyond either triggers trap

March 28, 2022 ECS 150, Operating Systems 20

Software Solutions

• Use timer to interrupt jobs that hog CPU too long
• To prevent jobs from interfering with I/O of each other, define at least

2 modes of execution
• Kernel (aka supervisor, system, monitor) mode executes privileged

instructions
• User mode is mode use jobs run in; attempting to execute privileged

instructions causes trap
• To invoke kernel mode from user mode, issue system code (the extracodes of

Atlas)

March 28, 2022 ECS 150, Operating Systems 21

System Calls

computer system call opcode
IBM 370 SVC
DECSystem-10 UUO
DECSystem-20 JSYS
PDP-11 TRAP
VAX-11 CHMK, CHMS, CHME

• Load code for system call into register
• Instruction causes trap
• Operating systems checks legality of request, acts accordingly
• Operating system can do things not related to current job

• Example: spooling

March 28, 2022 ECS 150, Operating Systems 22

Time Sharing

• Proposed by Strachy in 1959
• MIT’s CTSS (Cambridge Time Sharing System), SDC’s Q-32 were earliest

time sharing systems
• Reduced time between job submission, getting results
• Guaranteed quick response to short requests
• Many users shared computer

• MIT’s Multics combined time sharing with many Atlas features such as
virtual memory, protection, device independence
• Batch often merged with time sharing on various systems (BBN TOPS-10,

DEC TOPS-20, VAX VMS)
• Time sharing added to some batch systems (IBM OS/360 with TSO)

March 28, 2022 ECS 150, Operating Systems 23

Layered Machines

• Archetype is Dijkstra’s THE system
• As you go up the layers, each defines a more developed system
• Called “layers of abstraction”
• Processes at level j ignore all issues at layer j–1, invoking process at that layer

when the services it provides are needed

• Each layer forms an “abstract” or “virtual” machine

March 28, 2022 ECS 150, Operating Systems 24

THE Layers

• Level 0: hardware layer
• Real time clock interrupt to prevent CPU hogging
• Processor management

• Level 1: segment controller process layer
• Manages storage
• Higher layers see only segments, their actual locations being hidden

• Level 2: Operator console (message interpreters)
• Handles traffic to, from operator at system console
• Higher levels see their own console
Separate process because first part of message must be processed to figure out
which process the message is to be sent to

March 28, 2022 ECS 150, Operating Systems 25

THE Layers

• Level 3: I/O handlers
• Buffer input, unbuffer output
• Higher levels see logical device units, not registers
Above message interpreter because, if a device malfunctions, system must be
able to inform operators

• Level 4: User processes
• Each has complete virtual machine with separate I/O devices, operator

console, segmented storage, CPU
• Other than communication via primitives, processes completely isolated

• Level 5: operator (not implemented)

March 28, 2022 ECS 150, Operating Systems 26

First True Virtual Machine

• IBM’s CP/CMS, aka OS/370
• Gave users access to all machine features including illusion of private address

space, CPU, I/O devices (“minidisks”)

• How it works
• Underlying VM is real monitor
• 3 modes: virtual user, virtual monitor, real monitor
• All traps, interrupts on VM cause trap, interrupt to real monitor
• Real monitor handles it, modifies virtual monitor to make it appear virtual

monitor had handled the request, and restarts virtual monitor

March 28, 2022 ECS 150, Operating Systems 27

Virtual Machine

• Speed
• How much you have to so in software
• Example: IBM VM/370 only simulates privileged instructions, so speed acceptable

• Advantages
• You have complete user isolation
• You can use it for operating system development; if your operating system crashes,

others can continue working and you need not restart the machine

• Disadvantages
• Sharing hardware can be painful
• How do you share 3 disks among 7 users?

• One way: give each user a smaller, “virtual” disk

March 28, 2022 ECS 150, Operating Systems 28

Minicomputers

• Initially, referred to price; gradually became somewhat related to size
• Some examples through the decades follow
• 1950s: Burroughs E-101, Bendix G-15
• Price: under $50,000
• Characteristics: large size; vacuum tubes; slow

March 28, 2022 ECS 150, Operating Systems 29

Minicomputers

• 1960s: CDC 160, IBM 1620 had 12-bit instruction size
• Introduced relative, indirect addressing modes
PDP-1, PDP-8
• Price: under $18,000
• Characteristics: PDP-8 introduced real-time clock, DMA, etc. beginning real-

time control for minicomputers
DDP 116, DATA 620, IBM 1130, IBM 1800
• Characteristics: 16-bit architecture, vectored interrupt, multiple accumulators
• DDP 116 had I/O Selector, a beginning operating system for minicomputers
• IBM 1800 introduced disk operating systems
• All accepted commands from a terminal, could monitor real-time devices

March 28, 2022 ECS 150, Operating Systems 30

Minicomputers

• 1970s: PDP-11
• Characteristics: planned as family of compatible computers
• RT-11 operating system was single user, had notion of foreground,

background jobs
• RSTS operating system was time sharing system
• RSX-11 operating system was real-time operating system

UNIX
• Thompson, Ritchie at Bell Labs
• Used ideas from CTSS, Multics but made their operating system cleaner and

simpler in part due to space constraints
• Originally written in assembly but later rewritten in C for maintainability,

portability

March 28, 2022 ECS 150, Operating Systems 31

Fourth Generation of Computing

• Use of microprocessor, contained on a single large-scale
integrated(LSI) or very large-scale integrated (VLSI) chip
• Made true minicomputers, microcomputers available

March 28, 2022 ECS 150, Operating Systems 32

Microcomputers

• Intel 4004: 4-bit CPU
• Intel 8008:8-bit CPU; Intel 8080 improved it
• Many hobbyists built these; some companies also made them
• Apple II based on 6502 chips

• Digital Research created CP/M (Control Program for Microprocessors)

March 28, 2022 ECS 150, Operating Systems 33

Workstations

• Started at Xerox PARC
• Alto was first computer to use mouse
• Star was to be basis for “office of the future” that Xerox was developing

• Did badly, but inspired others

• Sun Microsystems began marketing Sun workstations, which quickly
became widely accepted in technical community
• Used 2 versions of UNIX; initially SunOS, then also Solaris

March 28, 2022 ECS 150, Operating Systems 34

Personal Computers

• Apple Lisa computer was not very successful
• Successor, the Apple Macintosh, introduced in 1984, was
• IBM PCs, introduced in 1981, became popular
• Microsoft introduced MS-DOS in 1981
• Began as a CP/M clone called 86-DOS purchased from Seattle Computer

Products
• Microsoft Windows released in 1985
• Graphical front-end for MS-DOS
• Windows NT released in 1993, based on MS-DOS
• Windows 95 released in 1995; compatible with MS-DOS

March 28, 2022 ECS 150, Operating Systems 35

