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Outline

• First generation of computing
• Second generation of computing
• Third generation of computing
• Fourth generation of computing
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First Generation of Computing

• Hardware only
• Programmers wrote, ran programs and operated system
• Programmers could halt execution, modify programs and data, etc.

• Programming done in binary or rewiring plug boards
• Then punch cards introduced to make life easier
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Processor Utilization and Throughput

• “Open shop” approach
• If you sign up for 1 hour, you get it — even if you do not need it all

Assume:
• Signup time is 15 min blocks
• Input time 0.3 min
• Output time 0.5 min
• Execution time 1.0 min

• Processor utilization = execution time / total time = 1 min / 15 min ≈ 7%
• Throughput = number of jobs run / total time = 1 job / 15 min = 4 jobs/hr
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Second Generation of Computing

• Use of transistors
• Separation of operators, programmers
• Programmers wrote programs on punch cards using assembly language, 

FORTRAN
• Operators ran jobs 
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Processor Utilization and Throughput

• Now jobs can be run one after the other
Assume:
• Input time 0.3 min
• Output time 0.5 min
• Execution time 1.0 min

• Processor utilization = execution time / total time = 1 min / 1.8 min ≈ 
55%
• Throughput = number of jobs run / total time = 1 job / 1.8 min = 33 

jobs/hr
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Batch Processing

• Copy jobs from cards to tape using satellite computer
• Main computer runs tape, output collected on another tape
• Copy output from tape to paper using satellite computer
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Processor Utilization and Throughput

Assume:
• Input time 0.3 min
• Output time 0.5 min
• Execution time 1.0 min

• And for the batching:
• Delivery time of 50 jobs: 30 min
• Transfer from cards to tape: 15 min
• Mount tape: 5 min
• Execution time (1 min / job): 50 min
• Print output tape: 25 min
• Manual separation of job outputs from printer: 15 min
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Processor Utilization and Throughput

Key numbers:
• Batch execution time: 50 min
• Mounting time: 5 min
• Number of jobs executed: 50 jobs
• Execution time 1.0 min

• Processor utilization = execution time / (mounting time + execution 
time) = 50 min / (5 + 50) min = 50 / 55 ≈ 91%
• Throughput = number of jobs run / (mounting time + execution time) 

= 50 jobs / (5 + 50) min = 50 jobs / 55 min ≈ 55 jobs / hr
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Brilliant Idea: Supervisory Programs

• Computers are fast at doing things people do, so why not have them 
do the job scheduling?
• First serious but informal discussion of writing such a supervisory 

program in 1953 in Herb Grosch’s hotel room during the Eastern Joint 
Computer Conference
• Intended to address idle time and work required to control I/O devices
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Led to First Operating System

• The Input / Output System, for the IBM 701
• Written at General Motors
• Provided a set of routines for accessing I/O devices
• If, at end of a job, the job branched back to it, it would accept and load next 

job

• Benefits
• Offline operations easier
• Changing I/O devices now just involved changing the driver in the set of 

routines and not in each program
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Another Brilliant Idea: Buffering

• Overlap CPU, I/O
• Idea: keep both CPU, I/O devices busy simultaneously
• Means I/O must be done independently of CPU

• First done in SHARE operating system
• Written by SHARE, IBM’s user group, for IBM 709
• Improved speed and automated much of operator’s job
• Operators had to load, unload cared and tapes
• Little error recovery
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Rise of Disk Operating Systems

• Resident Loader
• Loads both user, system programs into memory; readies them for execution; 

passes control to them
• Programs return control to operating system
• Process repeats

• Job Control Language
• Users used this to inform systems of needs of jobs (memory, printers, etc.)

• Device Independence
• Came from device support for many different devices
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Atlas System

• First computer designed to support operating system
• Several hardware innovations:
• Extracodes: special instructions causing traps to invoke special software 

routines
• Notion of virtual memory: one-level store using large disk or drum as backup 

memory for main store
• Interrupts: used to determine when external event occurs
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Interrupt Examples

• Alarm clock: at certain time, 
invoke the following software 
routine:
Disable alarm clock interrupt

Save program status

Invoke requested routine

Reset alarm clock interrupt

Reset program status

Resume normal processing

• Device: input occurs; invoke the 
following software routine:

Disable device interrupt

Save program status

Invoke appropriate routine

Reset device interrupt

Reset program status

Resume normal processing
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Third Generation of Computing

• Use of integrated circuits
• Multiprogramming: where many jobs run interleaved on one machine
• Spooling: buffering jobs (just like I/O); put jobs on disks to enable quick input 

and moving data and instructions between the disks and CPU
• Monitor can schedule jobs as disks can be accessed in random order

• Better than tapes, which must be accessed sequentially
• Computation of one job, I/O of another, can overlap
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Examples

• First implemented in EXEC II, the operating system for UNIVAC 1107
• Ran faster than users could load cards
• Performance in time between submission, resubmission of a job, 33% 

circulated in under 5 min, processor utilization 90%

• Burroughs 5000 Master Control program
• Used priorities to determine which job to run
• All user programs written in ALGOL or COBOL

• No assemblers available
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Customer Service and Compatibility

• IBM System/360 family used these
• Extensive customer service, support
• Very powerful (for the time) operating system, OS/360

• See Fred Brooks’ book The Mythical Man-Month
• Upward compatibility for all systems in IBM 360 family
• Powerful job control language
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Problems Introduced

• Protection required
• To prevent one job from overwriting others
• To prevent job from executing illegal instructions, causing system to crash
• To prevent infinite use of the CPU
• To prevent one job from interfering with I/O of another job
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Hardware Solutions

• Illegal instructions cause trap to prevent system crash
• Special fence register separates operating system from jobs
• Crossing it triggers trap

• Upper, lower bounds registers delimit memory allocated to current 
job
• Crossing beyond either triggers trap
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Software Solutions

• Use timer to interrupt jobs that hog CPU too long
• To prevent jobs from interfering with I/O of each other, define at least 

2 modes of execution
• Kernel (aka supervisor, system, monitor) mode executes privileged 

instructions
• User mode is mode use jobs run in; attempting to execute privileged 

instructions causes trap
• To invoke kernel mode from user mode, issue system code (the extracodes of 

Atlas)
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System Calls

computer system call opcode
IBM 370 SVC
DECSystem-10 UUO
DECSystem-20 JSYS
PDP-11 TRAP
VAX-11 CHMK, CHMS, CHME

• Load code for system call into register
• Instruction causes trap
• Operating systems checks legality of request, acts accordingly
• Operating system can do things not related to current job

• Example: spooling
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Time Sharing

• Proposed by Strachy in 1959
• MIT’s CTSS (Cambridge Time Sharing System), SDC’s Q-32 were earliest 

time sharing systems
• Reduced time between job submission, getting results
• Guaranteed quick response to short requests
• Many users shared computer

• MIT’s Multics combined time sharing with many Atlas features such as 
virtual memory, protection, device independence
• Batch often merged with time sharing on various systems (BBN TOPS-10, 

DEC TOPS-20, VAX VMS)
• Time sharing added to some batch systems (IBM OS/360 with TSO)
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Layered Machines

• Archetype is Dijkstra’s THE system
• As you go up the layers, each defines a more developed system
• Called “layers of abstraction”
• Processes at level j ignore all issues at layer j–1, invoking process at that layer 

when the services it provides are needed

• Each layer forms an “abstract” or “virtual” machine
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THE Layers

• Level 0: hardware layer
• Real time clock interrupt to prevent CPU hogging
• Processor management

• Level 1: segment controller process layer
• Manages storage
• Higher layers see only segments, their actual locations being hidden

• Level 2: Operator console (message interpreters)
• Handles traffic to, from operator at system console
• Higher levels see their own console
Separate process because first part of message must be processed to figure out 
which process the message is to be sent to
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THE Layers

• Level 3: I/O handlers
• Buffer input, unbuffer output
• Higher levels see logical device units, not registers
Above message interpreter because, if a device malfunctions, system must be 
able to inform operators

• Level 4: User processes
• Each has complete virtual machine with separate I/O devices, operator 

console, segmented storage, CPU
• Other than communication via primitives, processes completely isolated

• Level 5: operator (not implemented)
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First True Virtual Machine

• IBM’s CP/CMS, aka OS/370
• Gave users access to all machine features including illusion of private address 

space, CPU, I/O devices (“minidisks”)

• How it works
• Underlying VM is real monitor
• 3 modes: virtual user, virtual monitor, real monitor
• All traps, interrupts on VM cause trap, interrupt to real monitor
• Real monitor handles it, modifies virtual monitor to make it appear virtual 

monitor had handled the request, and restarts virtual monitor
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Virtual Machine

• Speed
• How much you have to so in software
• Example: IBM VM/370 only simulates privileged instructions, so speed acceptable

• Advantages
• You have complete user isolation
• You can use it for operating system development; if your operating system crashes, 

others can continue working and you need not restart the machine

• Disadvantages
• Sharing hardware can be painful
• How do you share 3 disks among 7 users?

• One way: give each user a smaller, “virtual” disk
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Minicomputers

• Initially, referred to price; gradually became somewhat related to size
• Some examples through the decades follow
• 1950s: Burroughs E-101, Bendix G-15
• Price: under $50,000
• Characteristics: large size; vacuum tubes; slow
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Minicomputers

• 1960s: CDC 160, IBM 1620 had 12-bit instruction size
• Introduced relative, indirect addressing modes
PDP-1, PDP-8
• Price: under $18,000
• Characteristics: PDP-8 introduced real-time clock, DMA, etc. beginning real-

time control for minicomputers
DDP 116, DATA 620, IBM 1130, IBM 1800
• Characteristics: 16-bit architecture, vectored interrupt, multiple accumulators
• DDP 116 had I/O Selector, a beginning operating system for minicomputers
• IBM 1800 introduced disk operating systems
• All accepted commands from a terminal, could monitor real-time devices
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Minicomputers

• 1970s: PDP-11
• Characteristics: planned as family of compatible computers
• RT-11 operating system was single user, had notion of foreground, 

background jobs
• RSTS operating system  was time sharing system
• RSX-11 operating system was real-time operating system

UNIX
• Thompson, Ritchie at Bell Labs
• Used ideas from CTSS, Multics but made their operating system cleaner and 

simpler in part due to space constraints
• Originally written in assembly but later rewritten in C for maintainability, 

portability
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Fourth Generation of Computing

• Use of microprocessor, contained on a single large-scale 
integrated(LSI) or very large-scale integrated (VLSI) chip
• Made true minicomputers, microcomputers available
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Microcomputers

• Intel 4004: 4-bit CPU
• Intel 8008:8-bit CPU; Intel 8080 improved it
• Many hobbyists built these; some companies also made them
• Apple II based on 6502 chips

• Digital Research created CP/M (Control Program for Microprocessors)
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Workstations

• Started at Xerox PARC
• Alto was first computer to use mouse
• Star was to be basis for “office of the future” that Xerox was developing

• Did badly, but inspired others

• Sun Microsystems began marketing Sun workstations, which quickly 
became widely accepted in technical community
• Used 2 versions of UNIX; initially SunOS, then also Solaris
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Personal Computers

• Apple Lisa computer was not very successful
• Successor, the Apple Macintosh, introduced in 1984, was
• IBM PCs, introduced in 1981, became popular
• Microsoft introduced MS-DOS in 1981
• Began as a CP/M clone called 86-DOS purchased from Seattle Computer 

Products
• Microsoft Windows released in 1985
• Graphical front-end for MS-DOS
• Windows NT released in 1993, based on MS-DOS
• Windows 95 released in 1995; compatible with MS-DOS
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