
System Calls

March 30, 2022 ECS 150, Operating Systems 1

Outline

• How they work
• File-oriented Linux system calls
• File descriptors
• open, read, write, close

• Process-oriented Linux system calls
• Process IDs
• fork, execve, wait

March 30, 2022 ECS 150, Operating Systems 2

System Calls

• Entry points so a process can use kernel services
• Calling them:
• The actual entry points are wrapped in a library function
• This sets up the arguments and causes a trap
• At that point, the kernel gets control and services the request
• On success, modifies system as appropriate and (possibly) return something
• On failure, return error, error code

March 30, 2022 ECS 150, Operating Systems 3

Example Wrapper (PDP-11, from UNIX v6)
/ file = open(string, mode)
/
/ file == -1 means error
.globl _open, cerror
_open:

mov r5,-(sp) / push contents of register r5 onto the stack
mov sp,r5 / put stack pointer into register r5
mov 4(r5),0f / put first argument into memory location
mov 6(r5),0f+2 / put second argument into memory location
sys 0; 9f / make open system call
bec 1f / on success, go to 1 below
jmp cerror / on failure, jump to error routine

1:
mov (sp)+,r5 / restore previous value of r5
rts pc / return

.data
9:

sys open / symbolic value of open call (here, it’s 5; see as29.s)
0:..; ..

March 30, 2022 ECS 150, Operating Systems 4

Linux File System

• File system is tree of directories and files on a single partition (device)
• Files stored on device
• Kernel identifies files by device number and inode number
• Directory is really a file with inode, filename pairs identifying files contained

in that directory
• May have 2 entries for same file; cannot cross devices

• inode numbers the same, but names differ
• Called hard link or link

• One file may simply contain path name of another file; can cross devices
• Called symbolic link or soft link

• Much more on this later

March 30, 2022 ECS 150, Operating Systems 5

System Call Errors

• All return –1 on error
• Specific error is given in external variable errno (an int)
• If positive, error occurred
• Use perror(3) to print error message
• Important: errno is not cleared automatically!

March 30, 2022 ECS 150, Operating Systems 6

Files

• In programs, represented by file descriptors
• These are non-negative integers, typically very small
• Some preassigned

• 0 for standard input
• 1 for standard output
• 2 for standard error

• File pointers point to a structure, one element being the file
descriptor
• Kernel maintains file pointer at position of reading/writing in file
• This is not the same as the file pointer at user level!!!!

March 30, 2022 ECS 150, Operating Systems 7

Accessing File

• First open it
• This assigns a file descriptor to the file, usually the lowest unused number
• Returns –1 on error; error code in global variable errno

• Then operate on it
• read puts information into memory
• write copies information out of memory

• When done, close it
• This releases the file descriptor so it can be reused

March 30, 2022 ECS 150, Operating Systems 8

Example: syscall-1.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

char *f = "test.py";
char buf[1024];
int fd, n;

if ((fd = open(f, O_RDONLY)) < 0 ||
(n = read(fd, buf, 1023)) < 0){

perror(f);
exit(1);

}
(void) close(fd);

(void) write(1, buf, n);

exit(0);
}

March 30, 2022 ECS 150, Operating Systems 9

And Its Execution

March 30, 2022 ECS 150, Operating Systems 10

open System Call Parameters

• first argument is file name
• second argument is one of:

• O_RDONLY, O_WRONLY, O_RDWR, OAPPEND: red, write, read and write, append
• O_CREAT: create file if it doesn’t exist ; no error if it does
• O_EXCL: if O_CREAT called and file exists, give error

• third argument is optional but sets protection mode:
• S_IRUSR, S_IWUSR, S_IXUSR: turn on owner read, write, execute (respectively)
• S_IRGRP, S_IWGRP, S_IXGRP: turn on owner read, write, execute (respectively)
• S_IROTH, S_IWOTH, S_IXOTH: turn on owner read, write, execute (respectively)

March 30, 2022 ECS 150, Operating Systems 11

read, write System Call Parameters

• int read(int filedescriptor, void *buffer, unsigned int numbytes)
• Read numbytes from file identified by filedescriptor, put then in buffer
• Returns:

• number of bytes read when anything read (note: may differ from numbytes!)
• 0 on EOF
• –1 on error; reason put into errno

• int write(int filedescriptor, const void *buffer, unsigned int numbytes)
• Write numbytes from buffer into file identified by filedescriptor
• Returns:

• number of bytes written when anything written (note: may differ from numbytes!)
• –1 on error; reason put into errno

• Note: write is (usually) to kernel buffer; actual write to device would come later

March 30, 2022 ECS 150, Operating Systems 12

close System Call Parameters

int close(int filedescriptor)
• Dissociate filedescriptor from the file
• This closes the file
• If filedescriptor is open when the process quits, it is automatically closed
• Returns:

• 0 on success
• –1 on failure; reason put into errno

March 30, 2022 ECS 150, Operating Systems 13

Other Useful File System Calls

• int stat(const char *pathname, struct stbuf *pathinfo)
• Puts information about pathname in structure pathinfo
• Returns:

• 0 on success
• –1 on failure; reason put into errno

• int lstat(const char *pathname, struct stbuf *pathinfo)
• Like stat, but if pathname is symbolic link, return information about link itself

and not target of symbolic link

March 30, 2022 ECS 150, Operating Systems 14

Other Useful File System Calls

• long int lseek(int filedescriptor, long into offset, int position)
• Position kernel file pointer to filedescriptor to offset bytes from position
• position is one of:

• SEEK_SET: from beginning of file
• SEEK_END: from end of file
• SEEK_CUR: from current position of kernel file pointer

March 30, 2022 ECS 150, Operating Systems 15

Other Useful File System Calls

• int link(const char *oldpath, const char *newpath)
• Create newpath as another name for oldpath
• oldpath must exist, or error
• Returns:

• 0 on success
• –1 on failure, reason put into errno

• int symlink(const char *oldpath, const char *newpath)
• Like link, but creates a symbolic link rather than a hard link

March 30, 2022 ECS 150, Operating Systems 16

Other Useful File System Calls

• int unlink(const char *path)
• Delete link to path; if no links remail, and file is not opened, this deletes that

file
• Returns:

• 0 on success
• –1 on failure, reason put into errno

• int symlink(const char *oldpath, const char *newpath)
• Like link, but creates a symbolic link rather than a hard link

March 30, 2022 ECS 150, Operating Systems 17

Linux Process-Oriented System Calls

• Processes named by identification number (pid)
• Process parent PID available to child
• Process information kept in a table (the process table)
• Older UNIX systems: this was fixed size
• Current systems: it can be expanded

• Usually limits imposed on number of processes a user may run at the
same time
• Does not apply to root
• Often a configuration option for the system; users cannot set it

March 30, 2022 ECS 150, Operating Systems 18

Linux Process-Oriented System Calls

• int fork()
• Duplicates the current process, except for:

• PID; this is unique
• Parent PID; this is the PID of the process that called fork()

• In particular, open file descriptors are inherited
• Basis for interprocess communication

March 30, 2022 ECS 150, Operating Systems 19

Linux Process-Oriented System Calls

• int execve(const char *path. char *const argv[], char *const envp)
• Executes file path with arguments argv and environment envp
• If envp omitted, the current environment variables are used
• Returns:

• On success, this overlays current process and so does not return
• –1 on failure; reason put in errno

• File descriptors remain open across execves
• Exception: a file descriptor can be marked “close-on-exec”

March 30, 2022 ECS 150, Operating Systems 20

Linux Process-Oriented System Calls

• int wait(int *status)
• Pauses process until one of its children terminates
• Status of child returned in status
• Returns:

• PID of terminating child on success
• –1 on failure; reason put in errno

• int waitpid(int pid, int *status, int options)
• Like wait() but waits for specific PID
• If pid set to –1, waits for any child to complete
• options is 0 is none needed, WNOHANG if waitpid should return immediately

id no child has exited

March 30, 2022 ECS 150, Operating Systems 21

Linux Process-Oriented System Calls

• void _exit(int status)
• Terminate the process immediately
• Any open file descriptors are closed
• status is exit status, sent to parent

• Only least significant byte of this sent
• Usually invoked as exit(), which is really a library function

March 30, 2022 ECS 150, Operating Systems 22

Linux Process-Oriented System Calls

• void _exit(int status)
• Terminate the process immediately

• So it does not return
• Any open file descriptors are closed
• status is exit status, sent to parent

• Only least significant byte of this sent
• Predefined status EXIT_SUCCESS means program worked; by convention this is 0
• Predefined status EXIT_FAILURE means an error occurred; by convention this is 1
• Can use any integer

March 30, 2022 ECS 150, Operating Systems 23

Linux Process-Oriented System Calls

• int getpid(void)
• int getppid(void)
• These return the process PID or parent process PID
• Always successful

March 30, 2022 ECS 150, Operating Systems 24

Other Useful System Calls

• int getuid(), getgid()
• Returns user ID (UID), primary group ID (GID)
• Always succeeds

• int setuid(int UID), setgid(int GID)
• Sets user ID (UID), primary group ID (GID)
• Returns:

• 0 on success
• 1 on failure; reason put into errno

• int setreuid(int ruid, int euid), setregid(int rgid, egid)
• Sets real (ruid) and effective (euid) user ID, primary group real (rgid) and effective

(egid) ugroup IDs
• Returns:

• 0 on success
• 1 on failure; reason put into errno

March 30, 2022 ECS 150, Operating Systems 25

Where to Find Information

• Section 2 of the UNIX manual

March 30, 2022 ECS 150, Operating Systems 26

