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Outline

• How they work
• File-oriented Linux system calls
• File descriptors
• open, read, write, close

• Process-oriented Linux system calls
• Process IDs
• fork, execve, wait
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System Calls

• Entry points so a process can use kernel services
• Calling them:
• The actual entry points are wrapped in a library function
• This sets up the arguments and causes a trap
• At that point, the kernel gets control and services the request
• On success, modifies system as appropriate and (possibly) return something
• On failure, return error, error code
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Example Wrapper (PDP-11, from UNIX v6)
/ file = open(string, mode)
/
/ file == -1 means error
.globl _open, cerror
_open:

mov r5,-(sp) / push contents of register r5 onto the stack
mov sp,r5 / put stack pointer into register r5
mov 4(r5),0f / put first argument into memory location
mov 6(r5),0f+2 / put second argument into memory location 
sys 0; 9f / make open system call
bec 1f / on success, go to 1 below
jmp cerror / on failure, jump to error routine

1:
mov (sp)+,r5 / restore previous value of r5
rts pc / return

.data
9:

sys open / symbolic value of open call (here, it’s 5; see as29.s)
0:..; ..
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Linux File System

• File system is tree of directories and files on a single partition (device)
• Files stored on device
• Kernel identifies files by device number and inode number
• Directory is really a file with inode, filename pairs identifying files contained 

in that directory
• May have 2 entries for same file; cannot cross devices

• inode numbers the same, but names differ
• Called hard link or link

• One file may simply contain path name of another file; can cross devices
• Called symbolic link or soft link

• Much more on this later
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System Call Errors

• All return –1 on error
• Specific error is given in external variable errno (an int)
• If positive, error occurred
• Use perror(3) to print error message
• Important: errno is not cleared automatically!
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Files

• In programs, represented by file descriptors
• These are non-negative integers, typically very small
• Some preassigned

• 0 for standard input
• 1 for standard output
• 2 for standard error

• File pointers point to a structure, one element being the file 
descriptor
• Kernel maintains file pointer at position of reading/writing in file
• This is not the same as the file pointer at user level!!!!
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Accessing  File

• First open it
• This assigns a file descriptor to the file, usually the lowest unused number
• Returns –1 on error; error code in global variable errno

• Then operate on it
• read puts information into memory
• write copies information out of memory

• When done, close it
• This releases the file descriptor so it can be reused
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Example: syscall-1.c

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(void)
{

char *f = "test.py";
char buf[1024];
int fd, n;

if ((fd = open(f, O_RDONLY)) < 0 ||
(n = read(fd, buf, 1023)) < 0){

perror(f);
exit(1);

}
(void) close(fd);

(void) write(1, buf, n);

exit(0);
}
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And Its Execution
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open System Call Parameters

• first argument is file name
• second argument is one of:

• O_RDONLY, O_WRONLY, O_RDWR, OAPPEND: red, write, read and write, append
• O_CREAT: create file if it doesn’t exist ; no error if it does
• O_EXCL: if O_CREAT called and file exists, give error

• third argument is optional but sets protection mode:
• S_IRUSR, S_IWUSR, S_IXUSR: turn on owner read, write, execute (respectively)
• S_IRGRP, S_IWGRP, S_IXGRP: turn on owner read, write, execute (respectively)
• S_IROTH, S_IWOTH, S_IXOTH: turn on owner read, write, execute (respectively)
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read, write System Call Parameters

• int read(int filedescriptor, void *buffer, unsigned int numbytes)
• Read numbytes from file identified by filedescriptor, put then in buffer
• Returns:

• number of bytes read when anything read (note: may differ from numbytes!)
• 0 on EOF
• –1 on error; reason put into errno

• int write(int filedescriptor, const void *buffer, unsigned int numbytes)
• Write numbytes from buffer into file identified by filedescriptor
• Returns:

• number of bytes written when anything written (note: may differ from numbytes!)
• –1 on error; reason put into errno

• Note: write is (usually) to kernel buffer; actual write to device would come later
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close System Call Parameters

int close(int filedescriptor)
• Dissociate filedescriptor from the file
• This closes the file
• If filedescriptor is open when the process quits, it is automatically closed
• Returns:

• 0 on success
• –1 on failure; reason put into errno
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Other Useful File System Calls

• int stat(const char *pathname, struct stbuf *pathinfo)
• Puts information about pathname in structure pathinfo
• Returns:

• 0 on success
• –1 on failure; reason put into errno

• int lstat(const char *pathname, struct stbuf *pathinfo)
• Like stat, but if pathname is symbolic link, return information about link itself 

and not target of symbolic link
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Other Useful File System Calls

• long int lseek(int filedescriptor, long into offset, int position)
• Position kernel file pointer to filedescriptor to offset bytes from position
• position is one of:

• SEEK_SET: from beginning of file
• SEEK_END: from end of file
• SEEK_CUR: from current position of kernel file pointer
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Other Useful File System Calls

• int link(const char *oldpath, const char *newpath)
• Create newpath as another name for oldpath
• oldpath must exist, or error
• Returns:

• 0 on success
• –1 on failure, reason put into errno

• int symlink(const char *oldpath, const char *newpath)
• Like link, but creates a symbolic link rather than a hard link
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Other Useful File System Calls

• int unlink(const char *path)
• Delete link to path; if no links remail, and file is not opened, this deletes that 

file
• Returns:

• 0 on success
• –1 on failure, reason put into errno

• int symlink(const char *oldpath, const char *newpath)
• Like link, but creates a symbolic link rather than a hard link
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Linux Process-Oriented System Calls

• Processes named by identification number (pid)
• Process parent PID available to child
• Process information kept in a table (the process table)
• Older UNIX systems: this was fixed size
• Current systems: it can be expanded

• Usually limits imposed on number of processes a user may run at the 
same time
• Does not apply to root
• Often a configuration option for the system; users cannot set it
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Linux Process-Oriented System Calls

• int fork()
• Duplicates the current process, except for:

• PID; this is unique
• Parent PID; this is the PID of the process that called fork()

• In particular, open file descriptors are inherited
• Basis for interprocess communication
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Linux Process-Oriented System Calls

• int execve(const char *path. char *const argv[], char *const envp)
• Executes file path with arguments argv and environment envp
• If envp omitted, the current environment variables are used
• Returns:

• On success, this overlays current process and so does not return
• –1 on failure; reason put in errno

• File descriptors remain open across execves
• Exception: a file descriptor can be marked “close-on-exec”

March 30, 2022 ECS 150, Operating Systems 20



Linux Process-Oriented System Calls

• int wait(int *status)
• Pauses process until one of its children terminates
• Status of child returned in status
• Returns:

• PID of terminating child on success
• –1 on failure; reason put in errno

• int waitpid(int pid, int *status, int options)
• Like wait() but waits for specific PID
• If pid set to –1, waits for any child to complete
• options is 0 is none needed, WNOHANG if waitpid should return immediately 

id no child has exited
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Linux Process-Oriented System Calls

• void _exit(int status)
• Terminate the process immediately
• Any open file descriptors are closed
• status is exit status, sent to parent

• Only least significant byte of this sent
• Usually invoked as exit(), which is really a library function
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Linux Process-Oriented System Calls

• void _exit(int status)
• Terminate the process immediately

• So it does not return
• Any open file descriptors are closed
• status is exit status, sent to parent

• Only least significant byte of this sent
• Predefined status EXIT_SUCCESS means program worked; by convention this is 0
• Predefined status EXIT_FAILURE means an error occurred; by convention this is 1
• Can use any integer
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Linux Process-Oriented System Calls

• int getpid(void)
• int getppid(void)
• These return the process PID or parent process PID
• Always successful
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Other Useful System Calls

• int getuid(), getgid()
• Returns user ID (UID), primary group ID (GID)
• Always succeeds

• int setuid(int UID), setgid(int GID)
• Sets user ID (UID), primary group ID (GID)
• Returns:

• 0 on success
• 1 on failure; reason put into errno

• int setreuid(int ruid, int euid), setregid(int rgid, egid)
• Sets real (ruid) and effective (euid) user ID, primary group real (rgid) and effective 

(egid) ugroup IDs
• Returns:

• 0 on success
• 1 on failure; reason put into errno
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Where to Find Information

• Section 2 of the UNIX manual
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