
Operating System Overview
and Processes

April 1, 2022 ECS 150, Operating Systems 1

Outline

• Overview of what operating systems do
• What a process is
• How a process is managed

April 1, 2022 ECS 150, Operating Systems 2

What an Operating Systems Does

• I/O Functions
• Process functions
• Memory functions
• Secondary storage functions
• User interface functions
• Other desirable features

April 1, 2022 ECS 150, Operating Systems 3

I/O Functions

• Read, write data
• Polling
• Interrupts, traps

• Byte-oriented devices
• Direct memory access (DMA)

April 1, 2022 ECS 150, Operating Systems 4

Process Functions

• Create, delete process
• Process status: get information about . . .
• Resources used
• Time used
• UID/owner of process
• GID/group of process

• Process control
• Limit resources, increase resources
• Control access to files
• Handle interrupts and traps

April 1, 2022 ECS 150, Operating Systems 5

Memory Functions

• Allocate, deallocate memory
• Share memory among processes
• Translate virtual addresses into physical addresses
• Manage pages, segments, and variants
• Map files into memory
• Protext parts of memory from being read, written, or executed

April 1, 2022 ECS 150, Operating Systems 6

Secondary Storage Functions

• Manage space on devices
• Map file addresses into secondary storage addresses and vice versa
• Scheduling reads, writes to secondary storage
• Manage writing directly into, from main memory locations

April 1, 2022 ECS 150, Operating Systems 7

User Interface Functions

• Enable users to run processes easily
• Enable users to manage files easily
• Allow easy configuration and control of system by administrators

April 1, 2022 ECS 150, Operating Systems 8

Other Desirable Features

• Efficiency
• Reliability
• Maintainability
• No larger than necessary

April 1, 2022 ECS 150, Operating Systems 9

Process

• Obvious definition: A running program
• But more complicated when on a multiprogrammed system
• As process execution is interleaved, the process does not execute

continuously
• CPU is virtualized, so each process thinks it is running continuously
• Processes are scheduled by the job/process scheduler

• In this sense, process is an abstraction

April 1, 2022 ECS 150, Operating Systems 10

Process State

• Running: process is executing
• Part of it lies in memory
• The memory that the process can address is called the process’ address space
• Special registers:

• PC, program counter, gives address of next instruction to be executed
• SP, stack pointer, points to the word beyond the stack top
• Frame pointer used to manage the stack for function arguments and (local) variables

• Blocked: process is not running but is waiting on some event
• Ready: process ready to run but the operating system has chosen not

to run it for some reason

April 1, 2022 ECS 150, Operating Systems 11

Process State Diagram

April 1, 2022 ECS 150, Operating Systems 12

Running Ready

Blocked

scheduler picks another process

scheduler picks this process

blocks forinput input becomes

available

Examples

time process A process B notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready A done

5 Running

6 Running

7 Running

8 Running B done

time process A process B notes

1 Running Ready

2 Running Ready

3 Running Ready A initiates I/O

4 Blocked Running A blocks, B runs

5 Blocked Running

6 Blocked Running

7 Ready Running A’s I/O done

8 Ready Running B now done

9 Running

10 Running

April 1, 2022 ECS 150, Operating Systems 13

Process APIs

• Create: initiate a new process
• When command entered at shell, shell creates (spawns) new process of that

program executing
• Destroy: terminate a process
• Use this to terminate (kill) an existing process

• Wait: block for some event
• Useful when the process has to stop for some event

• Status: get status information about a process
• Other controls: varied ways to interact with the process
• Most systems allow a user to suspend, resume a process

April 1, 2022 ECS 150, Operating Systems 14

Details of Process Creation

• Operating system loads code, any initialized data into memory
• This will become the process, so it is assigned an address space
• Only parts of the program may be loaded at this time; the rest will be moved into

memory when needed, and moved out when no longer needed
• Paging, segmentation, swapping

• Operating system allocates memory for stack
• On Linux, program arguments and environmental variables are put onto the stack
• Stack can grow or shrink

• Operating system allocates space for heap
• Uninitialized memory, accessed by the process allocating itself memory
• More heap space can be allocated if needed

April 1, 2022 ECS 150, Operating Systems 15

Details of Process Creation

• Operating system does other initializations
• Opens input, output files and assigns them to the process

• On Linux, this is done by assigning file descriptors

• Operating system then marks the process as ready to run, putting it in
the READY state
• It may execute it immediately, changing the state to RUNNING

April 1, 2022 ECS 150, Operating Systems 16

Data Structures for Process Management

• Process information kept in process table
• May be fixed size or be able to grow

• Process table entry contains information about a process
• Often split into 2 parts, one remaining always in memory, the other part (not

part of h process table) able to be moved out of memory

April 1, 2022 ECS 150, Operating Systems 17

Process Table Entry Example

• Example is from UNIX V6
• See the handout “Process Information in UNIX V6”

• Modern systems may have more complex entries, but the idea is the
same

April 1, 2022 ECS 150, Operating Systems 18

Process Execution

• Direct execution
• Kernel runs process on CPU, without allowing any other process to run

• Limited direct execution
• Kernel runs process, but on trap or interrupt, kernel takes control and allows

another process to run
• Raises issue of switching between process

April 1, 2022 ECS 150, Operating Systems 19

Direct Execution

operating system program/process

create entry for process in process table

allocate memory for program

load program into memory

setup stack (including arguments, environment, etc.)

clear registers

call start of program (eg., call main())

run main()

execute return from main()

free memory of process

delete process table entry

April 1, 2022 ECS 150, Operating Systems 20

Problems

• How does operating system prevent program from doing something
we don’t want, wile impacting performance minimally (if at all)?
• How does the operating system stop a program and switch to another

process?
• In other words, how do we do time-sharing and multiprogramming?

April 1, 2022 ECS 150, Operating Systems 21

Limited Direct Execution

• Make some instructions privileged
• These are instructions enabling interference with, or directly interfering with,

other processes or system management functions
• This way, the process carries out its need but does not have control of the

complete system

• To do this, introduce modes or levels of privilege
• Kernel mode: privileged instructions can only be executed in this mode
• User mode: normal, processes run in this mode but cannot execute privileged

instructions

April 1, 2022 ECS 150, Operating Systems 22

System Calls

• Cause a trap
• When a trap or interrupt (of any kind) occurs:
• Do a context switch to kernel
• Service the trap or the interrupt
• Select the next process to run
• Do a context switch to that process

• So at boot time, the trap table/interrupt vector must be initialized

April 1, 2022 ECS 150, Operating Systems 23

Context Switch

• PC, processor status word, registers, pushed onto a small kernel stack
allocated for the process
• Jump to routine in kernel indicated by trap table/interrupt vector
• Kernel services the trap/interrupt
• Kernel selects the next process to run
• It may be a different one

• Kernel pops the information from the kernel stack and restores them
to the registers, processor status word, and PC
• PC popped last, as when it is restored, process restarts

April 1, 2022 ECS 150, Operating Systems 24

Context Switch Example

• Example is from XINU on an LSI-11 system
• See the handout “Context Switch Routine for XINU System on LSI-11”
• LSI-11 has same instruction set as PDP-11

• Modern systems may have more complex entries, but the idea is the
same

April 1, 2022 ECS 150, Operating Systems 25

Limited Direct Execution

operating system at boot (kernel mode) hardware program/process (user
mode)

initialize interrupt/trap vectors

remember address of syscall handler

create entry for process in process table

allocate memory for program

load program into memory

setup stack (including arguments,
environment, etc.)

fill kernel stack with registers, PC

return-from-trap

restore registers from kernel stack

April 1, 2022 ECS 150, Operating Systems 26

Limited Direct Execution

operating system at boot (kernel mode) hardware program/process (user mode)

change to user mode

jump to main()

run main()

system call causes trap into OS

save registers to kernel stack

change to kernel mode

jump to trap handler

handle trap, ie system call

return-from-trap

restore registers from kernel stack

April 1, 2022 ECS 150, Operating Systems 27

Limited Direct Execution

operating system at boot (kernel mode) hardware program/process (user mode)

change to user mode

jump to PC after trap

return from main()

causes trap

free memory of process

delete process table entry

April 1, 2022 ECS 150, Operating Systems 28

