Room Etiguette

* Do not go into room until previous class is dismissed
* That is, until you see folks coming out

* Going into the room before that disrupts the class, disadvantaging
them

* Also, please be respectful to members of the class and the instructor
* Too much nastiness in the world today!
* No excuse for being rude

What Does perror(3) Mean?

* This is the library function perror in section 3 of the Linux manual
* To see It, type
man 3 perror

to the Linux shell

Process Scheduling

Round Robin

* Designed especially for time sharing
» Uses quantum, typically between 1/60 sec and 1 sec

* Processes kept in a queue
* As each process is preempted, it moves to the rear of the queue
e All new arrivals come in at the rear of the queue

Example

e Using our previous jobs with a quantum of 5:

MEEBEIEEMEE

proc A B
rem 5 24 0 2 7 0 19 O 2 14 0 9 4 O

April 6, 2022 ECS 150, Operating Systems

Round Robin

* Decision mode: preemptive (at quantum)

* Priority function: pla,r,t)=c

e Arbitration rule: cyclic

“Process | Servicetime | Amivaltime | St | Fmsh | T | w_ | R
A 10 0 28 28 18 2.8
B 29 1 61 60 31 2.1
C 3 2 13 11 8 3.7
D 7 3 35 28 21 4.0
E 12 4 47 43 35 3.6

mean 34 22.6 3.2

April 6, 2022 ECS 150, Operating Systems 6

Variants

* Round Robin, but adjust quantum periodically.

* example: after every process switch, the quantum becomes g/n, where n is the
number of processes in the ready list

* Few ready processes means that each gets a long quantum, minimizing process
switches.

* Lots of ready processes means that this algorithm gives more processes a shot at the
CPU over a fixed period of time, at the price of more process switching

* Processes needing a small amount of CPU time get a quantum fairly soon, and hence
may finish sooner.

* Round Robin, but give the current process an extra quantum when a new
process arrives

e This reduces process switching in proportion to the number of processes arriving.

Multi-Level Feedback Queue

* Goal is to optimize turnaround time , make a system feel responsive
to interactive users

 Problems:

e Reducing turnaround time means running SJF algorithm, but do not know
that time in advance

* Round Robin great at reducing response tim, terrible at reducing turnaround
time

Solution: Multiple Queues!

 MLFB uses multiple queues, each with its own priority

* Each queue uses round robin, with processes going on the end until they are moved
to next higher queue

* Rule: given processes A, B, the MLFQ:
If priority(A) > priority(B), then A runs
If priority(A) = priority(B), then A, B run in round robin
If priority(B) > priority(A), then B runs

* Entering processes go into the highest priority queue

* |f process blocks, it reenters the scheduler at prescribed level
e Usually same of higher priority ones

* Some systems: periodically move processes to highest priority queue

Results

* CPU-bound jobs drop in priority after some number of quanta

* |/O bound jobs are on the top, as this gives interactive users quick
response

* |If a process changes from a CPU-bound process to an |/O-bound
process, its priority changes accordingly (but it may change slowly)

* So it is adaptive, adapting to the process mix, rather than keeping
conetant how each process is handled

Multi-Level Feedback Queue

* Decision mode: preemptive (at quantum)

* Priority function: p(a, r, t) = n—i, where | satisfies both 0 <i<n
and Ty(2'-1) < a < Ty(2*'-1), where T, = 2P T,

e Arbitration rule: cyclic or chronological within queues

Below: quantum=1,n=2,7,=2,7,=4,T7,=8

" Process | Servcetime | Arvaltime | Start | Fmsh | T | w | R
0 0 38 38 28 3.8

A 1

B 29 1 61 60 31 2.1
C 3 2 13 11 8 3.7
D 7 3 30 27 20 3.9
E 12 4 44 40 28 3.3

mean 35.2 23 3.4

April 6, 2022 ECS 150, Operating Systems 11

Other Issues

* Some questions:
* How many queues should there be?
* How big should the quantum be for each queue?
 How and when should you move a process to a higher queue?

* No set answers; you learn from experience

* Most use different quanta for levels; the lower the priority, the longer the
guantum as CPU-bound processes tend to drop

* Some quanta set by table; others by formula
* Some systems allow users to advise on priority
* Some reserve highest levels for operating system work

External Priority Methods

* Scheduling depends upon external factors such as amount paid
* User buys a particular response ratio
* Process must finish by a certain time

e Groups of users are allocated unequal blocks of time based on some
criteria
* Importance of work
* Funding
e Others...

Modified Round Robin

e Set the quantum independently for each process

* The quantum is based on an external priority for the process
* High priority work gets a longer quantum than normal processes
 The more you pay, the longer the quantum

VAX//NVMS Scheduler

* 32 priority levels
* 0-15 for regular processes
* 16-31 for real-time processes
* The higher the number, the higher the priority

* Real-time processes have fixed priority
* Regular process priority is dynamic

Assignment of Priorities

* At process creation, assign a base priority
* This is process’” minimum priority

e System events alter current priority of the process
* Each event has an associated priority increment

* Example: terminal read > terminal write > disk I/O
* When awakened by system event, increment added to priority

* On pre-emption due to quantum expiration, priority decreased by 1

e Similar to a MLFB scheme, with two major differences:

* Processes need not start at the highest level (they start at the base priority
level)

* Quanta are associated with each process, not level

Worst Service Next

e After each quantum, compute suffering function based on:
* How long the process has been waiting
« How many times has it been pre-empted
 How much user is paying
* How much time and resources it is expected to use

* Process with greatest suffering goes next

Guaranteed Response Ratio

e User buys a guaranteed response ratio
e Like Worst Service Next

 Suffering function takes into account difference between the
guaranteed response ratio and the actual current response ratio

Deadline Scheduling

* Each process specifies:
* How long it will run (usually an overestimate by person submitting job)
 When it must be finished by

» System does one of two things:

* Accepts the job and schedules the process to meet both the time required for
the process to execute and when it needs to finish by

* Rejects the job, because it cannot be completedby the deadline

Fair Share Scheduler

 Allocate blocks of CPU time to a particular set of processes
* Within each group, use a standard schedule
* Allocate CPU proportionally to each group

* Example:

* Process p, in group 1; processes p,, p; in group 2; processes p,, Ps, Pg in group
3; processes p, Pg, Py, P1o IN group 4
e Regular scheduler: give each process 10% of CPU time

 Fair share scheduler: give each group 25% of CPU time
p1 gets 25%

* p,, p;get 25%/2 =12.50%

* P4, Ps, Pe g€t 25%/3 = 8.33%

* P, Ps, Ps, P1o €t 25%/4 = 6.25%

Example from UNIX Fair Share Scheduler

* Assume 3 processes
* Group 1 has process A, group 2 has processes B, C
* Internal priority function:
priority = (recent CPU usage)/2 + (group CPU usage)/2 + threshhold
(threshhold is 60 for user processes)
* Decay function:
decay of CPU usage = (CPU usage)/
This decrements the current CPU usage of processes not run
It effectively raises the process priority

Real-Life Example

* Quantum is 1 second
* The lower the number, the higher the priority

A

runs for 1 second

Decay applied to CPU and group CPU usage; both become 30
A’s new priority is 30/2 + 30/2 + 60 =90

B, C both have priority 60, so one of them goes

runs for 1 second

Decay applied to CPU and group CPU usage

A’s CPU time is now 15, group 1’sin 15, B’s is 30, group 2’s is 30
A’s new priority is 15/2 + 15/2 + 60 = 74 (note integer division)
B’s new priority is 30/2 + 30/2 + 60 =90

C’s new priority is 0/2 + 30/2 + 60 = 75

Real-Life Example

A runs for 1 second
Decay applied to CPU and group CPU usage
A’s CPU time is now (15+60)/2 = 37, group 1’sis 37, B’s is 15, group 2’s is 15
A’s new priority is 37/2 + 37/2 + 60 = 97 (note integer division)
B’s new priority is 15/2 + 15/2 + 60 =75
C’s new priority is 0/2 + 15/2 + 60 = 67
C runsfor 1 second
Decay applied to CPU and group CPU usage
A’s CPU time is now 37/2 =18, group 1’sis 18, B’s is 7, group 2’s is 37; C’s is 30
A’s new priority is 18/2 + 18/2 + 60 = 69 (note integer division)
B’s new priority is 7/2 +37/2 + 60 =81
C’s new priority is 30/2 + 37/2 + 60 = 93

Real-Life Example

e SO now A runs

* Note group 1 (A) gets 50% of the CPU, group 2 (B, C) gets 50% of the
CPU

* In group 2, B gets 25% and C gets 25% (equally split)

Lottery Scheduling

* |dea: hold lottery to determine which process runs next
* Processes that are to run more often get more chances to win the lottery

* Tickets represent share of CPU the process should receive
* A has 75 tickets, B has 25; then A gets CPU 75% of the time, B 25% of the time

 How it works
* Say there are 100 tickets; A has tickets 0-74, B 75-99
* Scheduler picks random number between 0 and 99 inclusive
e Ifit’s between 0, 74 inclusive, run A; otherwise run B

Example: From Above

O 00 N o i Ao W N =, O

April 6, 2022

79
68
69
28
75
94
68
28
15
40

> > > > W W r > > W

10
11
12
13
14
15
16
17
18
19

_num _
82

45
94
27
12
15
29
43
76
95

100 tickets
* A has tickets 0 to 74 (75% of all tickets)

B
* B has tickets 75 to 99 (25% of all tickets)
A * So A should run 75% of the time, B 25% of the time
B
A * Intable: num is random number between 0 and 99
inclusive; proc is process
A
A * Aruns 13 times, B runs 7 times
A * So A runs 65% of the time, B runs 35% of the time
A
B
B
ECS 150, Operating Systems 26

Implementation

* Keep processes in a list

* Scheduler generates random number between 0 and number of
tickets (less 1)

* Scheduler walks list, adding up numbers
* When sum exceeds random number, that’s the process that runs

Example

* 5 processes
* A has 30 tickets
* B has 25 tickets
* Chas 10 tickets
* D has 55 tickets
* E has 6 tickets

* Scheduler generates 78

e Cumulative sum exceeds
78 at D (65 < 78 <120), so
D runs

April 6, 2022

m O O @ >

ECS 150, Operating Systems

30
25
10
55

30
55
65
120
126

28

Compensation Tickets

* |/O bound processes block often, using less than a full guantum, so
are likely to get less than their expected share of CPU

* Process that uses a fraction f of its CPU quantum can be given a
compensation ticket
* Ticket inflates value by 1/f until process gets CPU

* These favor I/O-bound and interactive processes, helping them get
their fir share of CPU

Example

* Quantum is 150ms

* Process blocks for I/O after 50ms
* f=50ms/150ms =1/3

* Value of all the process’ tickets are multiplied by 1/f, or 3
» After process gets CPU, original values restored

Problem

* How are tickets distributed among the processes?

e Give each user some number of tickets, and user distributes them among
their processes

* An open problem
* Guarantees are probabilistic, not deterministic
* High response time variability

