What Happened On Canvas?

e Late Wednesday, the pages for ECS 150 on Canvas disappeared.

* | chatted with the Canvas folks (on the phone, wait time was very
long).

* They suggested | try something, | did, and it didn’t work.
* They escalated the problem, and around noon it got fixed.
* What happened?

* Apparently when a new section was added, the ECS 150 pages on Canvas
were re-initialized

* The folks to whom the problem was escalated were able to put everything
back (phew!)

New Section Is Opened

* The new section was approved late Wednesday
* It’s in 55 Roessler on Wednesday from 1:10pm to 2:00pm

* Please do not ask me if you will get in; | don’t know
* | do know that graduating seniors in CS and ECS will have priority

* If you would prefer to go to the other discussion section, whichever
one it is, you can just go and sit in if there is an empty seat

* Changing sections using a PTA has lots of problems

Interprocess Synchronization
and Communication

What’s the Problem?

* Processes executing simultaneously
* Multiple cores or CPUs
* Process uses the GPU or FPU for computation

* Some statements must be completed before others are begun

a «— X t+y
b« z + 1
c «— a+ b
d «— c + 1

* Here, the first two statements must be executed before the third or
fourth (precedence constraint)

* But the first two can be done independently

Precedence, Process Flow Graphs

Precedence graph Process flow graph
* Precedence graph ?1
focuses on statements
* Process flow graph 02
focuses on processes > 07
* Both must be acyclic @ b6
graphs &
* And, they are
equivalent g>8

Bernstein Conditions

* Describe when statements can be executed in parallel
* R(S;): set of variables that are read in statement S;
* W(S)): set of variables that are written in statement S;
* Bernstein conditions for statements S;and S;:
R(S) N W(S) =@ and R(S) n W(S) =@ and W(S;) n W(S)) = @

Bernstein Conditions

e Remember this? Start

DA e
b« z + 1 51\ S2

c «— a + b

d «— c + 1 S3
* In the above example:

R(S1)={x,y} R(S)={z} R(S3)={a,b} R(S;)={c} OS4
W(S,)={a} W(S)={b} WI(S3)={c} WI(S)={d}
* As W(S;) n R(S;) ={a}#®, 1and 3 must be executed sequentially.

* As R(S;) n W(S,) =@ and R(S,) n W(S,) =@ and W(S;) n W(S,) =@, 1 and 2
can be executed in parallel

Parallel Programming: fork, join, quit

* fork L * join count, L
 Split process in two; first begins * Decrement count and if O, branch
after the fork, second begins at L tol
Example: In other words:
fork L count <« count - 1
a «— X+vy; 1f count = 0 then
goto L

L: b «— 7z + 1

Example

count <« 2; * This computes:
fork dopar a < X +y
A — x + y; b« z + 1

c «— a + b

goto endpar
d «— c + 1

dopar: b «— z + 1;
with the first two lines executing
in parallel, and then after those
the last two lines execute
next: ¢ <« a - b sequentislly

d «— c + 1

endpar: joiln count, next

quit

More Complicated Example

to «— 2;
t8 «— 3;
Sl; fork p2; fork pb5; fork p7;
p2: S2; fork p3; fork p4; quit
p5: S5; join tb6,pb; quit;
p/:S7; join t8,p8; quit;
p3: S3; jJoin t8,p8; quit;
pd: S4; join t6,p6; quit;
p6: Sb; join t8,p8; quit;
p8: S8; quit;

Comments

* Advantages
* simple
e powerful
* easy to derive from precedence or process flow graphs

e Disadvantages
* clumsy
* lots of gotos and goto-like structures

parbegin, parend

* These bracket statements or blocks to be done in parallel
* Eliminates gotos and goto-like structures

* Example:
parbegin
a « X TtV
b 2z + 1
parend
C « a — b;
d «c + 1

Comments

* Advantages
e easy to read
* uses principles of modular programming
 avoids goto-like structures

e Disadvantages
* not as powerful as the fork-join-quit primitives

Why?

* Consider the concept of proper nesting
* S(a, b): represents serial execution of processes a, b
* P(a, b): represents parallel execution of processes a, b

* A process flow graph is properly nested if it can be described by P, S,
and functional composition

Example of Proper Nesting

* The program The process flow graph The functional representation

parbegin (S

a « x t+y P(a, b)

1 2

b « z + 1 i <>p S(P(a, b), c)
parend 03 S(S(P(a, b), c)), d)
C « a — b; v
d~c + 1 04 So it is properly nested

Another Example

CLAIM: This is not properly nested

D1 PROOF: For something to be properly nested, it must ne of
the form S(p,, p;) or P(p;, p;) at most interior level.
P2/ | 3 It’s not P(p,, p;) as there are no constructs of that form in
3 07 the graph.
p4

All serially connected processes p;, p; have at least 1 more
process p, starting or finishing at the node n; between p,
and p;; butif S(p;, p;) is the innermost level, there cannot
be any such pk, because if it existed, another, more

fB interior P or S must be present, contradiction. So it’s not

® S(p;, p;) either.

What This Means

* fork, join, quit can represent more complex structures than parbegin
and parent

e parbegin, parend require the process flow graph to be properly
nested

The Problem with Process Interaction

* Consider the following implementation of the producer-consumer
problem

* One process (producer) generates items that it must pass to the other
process (consumer)

* Consumer must wait for the producer to produce an item
* Producer must not produce more items when buffer is full

* Sometimes called the bounded buffer problem

The Problem with Process Interaction

e The variables

e buffer and counter are shared variables
e counter can assume values between 0 and n inclusive

var buffer: array [0..n-1] of 1item;
in, out: 0...n-1;

counter: 0...n

Producer and Consumer Code

* Producer code * Consumer code
producer: consumer:
repeat repeat

make next p;
while counter = n do

while counter = 0 do

(* nothing *);

(* nothing *); next — buffer[out];

buffer[in] < next p; out < (out + 1) mod n
in < (in+1) mod n; counter — counter - 1;
counter — counter + 1; until false;

until false;

Does It Work In Parallel?

e Suppose counter is 5, and consider the lines counter < counter + 1
and counter «<— counter — 1.

* They could compile into the following:

counter = counter + 1: counter < counter — 1:
Pl: rl1 < counter Cl: r2 < counter
P2: rl<—rl+1 C2: r2«r2-1

P3: counter «—rl C3: counter «—r2

A Race Condition

* Depending on how the statements intermingle, you get different
values for count

e P1P2C1C2P3C(C3 counteris 4
e P1P2P3C1C2(C3 counteris 5
e P1P2C1C2C3P3 counteris 6

Critical Section Problem

* Critical section: block of code that only one process at a time can
execute

* When one process is in its critical section, no other process can be in its
corresponding critical section

* Problem: design a protocol to do this
e Generic description of solution framework:
entry section
critical section
exit section
remainder section

Requirements for Solution

* Mutual Exclusion: at most 1 process can be in the critical section at
any time

* Progress: if no process is in the critical section, and several other
processes wish to enter, then only processes not in the remainder
section can take part in deciding which process enters

* Bounded Wait: a bound on the number of times other processes are
allowed to enter the critical section after a process asks to enter the
critical section and before it is allowed to

Implicit assumption: each process runs at non-zero speed, but no
assumption is made as to relative speed

Background

* We use 2 processes, p;and p;
* Eitheri=0andj=1orj=0andi=1
* Current process is always p; and the other one is p;

* First, we’ll analyze several proposed solutions

Proposed Solution 1

var turn: 0..1; // whose turn it is
while turn # 1 do // .. entry section
/* nothing */
// .. critical section

turn = 7j; // .. exit section

Proposed Solution 1 Analysis

* Mutual exclusion? Yes; turn can only have 1 value, and second line
blocks the process that does not have that value from entering critical
section

* Progress? No; processes must enter the critical section in alternate
order; so a process in the remainder section takes part in deciding
which process enters the critical section

Proposed Solution 2

var 1nCS: array[0..1] of boolean = false;
// who is in critical section
while inCS[j] do // .. entry section
/* nothing */
1nCS[1] = true
// .. critical section

inCS[i] = false; // .. exit section

Proposed Solution 2 Analysis

* Mutual Exclusion: No; suppose p;, p; execute the while statement at
the same time. As both inCS[i] and inCS[j] are false, both
enter the critical section.

Proposed Solution 3

var 1nterested: array[0..1] of boolean = false;
// who wants to enter critical section
interested[i] = true; // .. entry section
while 1nterested[]] do
/* nothing */
// .. critical section

interested[i] = false; // .. exit section

Proposed Solution 3 Analysis

* Mutual Exclusion: Yes; a process cannot enter the critical section
unless interested[j]is false butif a processis in the critical
section, interested[j] must be true.

* Progress: No; suppose both processes arrive at the while statement
at the same time; as both elements of interested]|]are true, they
loop forever

Proposed Solution 4

var 1nterested: array[0..1] of boolean = false;

// who wants to enter critical section
turn: 0..1;

interested[i] = true; // .. entry section
turn = 73;
while 1nterested[j] and turn = j do

/* nothing */
// .. critical section

interested[i] = false; // .. exit section

Proposed Solution 4 Analysis

* Mutual Exclusion: Yes. p; enters the critical section only if
interested([j] is falseand turnisi. Forp, p; both to be in
the critical section, both elements of interested|[] must be
true. Only one could have passed the while loop (as turn is i orj but
not both) so one does the loop (say, p;) and the other does the
preceding lines. After the first line in entry section, both elements of
interested[] are true, but turnisj, so only p; enters the
critical section. So only 1 process can be in the critical section at a

time.

Proposed Solution 4 Analysis

* Progress: Yes. p; blocked from entering critical section only if it is stuck at
the while loop, which means interested[]j] istrueand turnisj. If
p;is not in the entry or critical sections, interested[]] isfalse and p;
goes in.

If p;is at the while statement, turn is either/or j, and the process with
index turn will go in. Once p; leaves the critical section, interested[i]
is false and p; can go in. If p;resets interested[J] totrue, then turnis
set to i and p; goes in. So only processes in the entry, exit, or critical section
affect which process goes in, demonstrating progress.

* Bounded wait: Yes. At most one additional entry by p; will occur if both
request entry at the same time, so the wait is bounded.

