
What Happened On Canvas?

• Late Wednesday, the pages for ECS 150 on Canvas disappeared.
• I chatted with the Canvas folks (on the phone, wait time was very 

long).
• They suggested I try something, I did, and it didn’t work.
• They escalated the problem, and around noon it got fixed.
• What happened?
• Apparently when a new section was added, the ECS 150 pages on Canvas 

were re-initialized
• The folks to whom the problem was escalated were able to put everything 

back (phew!)

April 8, 2022 ECS 150, Operating Systems 1



New Section Is Opened

• The new section was approved late Wednesday
• It’s in 55 Roessler on Wednesday from 1:10pm to 2:00pm
• Please do not ask me if you will get in; I don’t know
• I do know that graduating seniors in CS and ECS will have priority

• If you would prefer to go to the other discussion section, whichever 
one it is, you can just go and sit in if there is an empty seat
• Changing sections using a PTA has lots of problems

April 8, 2022 ECS 150, Operating Systems 2



Interprocess Synchronization 
and Communication

April 8, 2022 ECS 150, Operating Systems 3



What’s the Problem?

• Processes executing simultaneously
• Multiple cores or CPUs
• Process uses the GPU or FPU for computation

• Some statements must be completed before others are begun
a ← x + y
b ← z + 1
c ← a + b
d ← c + 1

• Here, the first two statements must be executed before the third or 
fourth (precedence constraint)
• But the first two can be done independently 

April 8, 2022 ECS 150, Operating Systems 4



Precedence, Process Flow Graphs

April 8, 2022 ECS 150, Operating Systems 5

Precedence graph Process flow graph

• Precedence graph 
focuses on statements

• Process flow graph 
focuses on processes

• Both must be acyclic 
graphs

• And, they are 
equivalent



Bernstein Conditions

• Describe when statements can be executed in parallel
• R(Si): set of variables that are read in statement Si
• W(Si): set of variables that are written in statement Si
• Bernstein conditions for statements Si and Sj:

R(Si) ∩ W(Sj) = Ø and R(Sj) ∩ W(Si) = Ø and W(Si) ∩ W(Sj) = Ø

April 8, 2022 ECS 150, Operating Systems 6



Bernstein Conditions

• Remember this?
a ← x + y
b ← z + 1
c ← a + b
d ← c + 1

• In the above example:
R(S1) = { x, y } R(S2) = { z } R(S3) = { a, b } R(S4) = { c }
W(S1) = { a } W(S2) = { b } W(S3) = { c } W(S4) = { d }
• As W(S1) ∩ R(S3) = { a } ≠ Ø, 1 and 3 must be executed sequentially. 
• As R(S1) ∩ W(S2) = Ø and R(S2) ∩ W(S2) = Ø and W(S1) ∩ W(S2) = Ø, 1 and 2 

can be executed in parallel

April 8, 2022 ECS 150, Operating Systems 7



Parallel Programming: fork, join, quit

• fork L
• Split process in two; first begins 

after the fork, second begins at L
Example:

fork L
a ← x+y;
. . .

L: b ← z + 1

• join count, L
• Decrement count and if 0, branch 

to L
In other words:

count ← count – 1
if count = 0 then

goto L

April 8, 2022 ECS 150, Operating Systems 8



Example

count ← 2;

fork dopar

a ← x + y;

goto endpar

dopar: b ← z + 1;

endpar: join count, next

quit

next: c ← a – b

d ← c + 1

• This computes:
a ← x + y
b ← z + 1
c ← a + b
d ← c + 1

with the first two lines executing 
in parallel, and then after those 
the last two lines execute 
sequentislly

April 8, 2022 ECS 150, Operating Systems 9



More Complicated Example
t6 ← 2;
t8 ← 3;
S1; fork p2; fork p5; fork p7;

p2: S2; fork p3; fork p4; quit
p5: S5; join t6,p6; quit;
p7: S7; join t8,p8; quit;
p3: S3; join t8,p8; quit;
p4: S4; join t6,p6; quit;
p6: S6; join t8,p8; quit;
p8: S8; quit;

April 8, 2022 ECS 150, Operating Systems 10



Comments

• Advantages
• simple
• powerful
• easy to derive from precedence or process flow graphs

• Disadvantages
• clumsy
• lots of gotos and goto-like structures

April 8, 2022 ECS 150, Operating Systems 11



parbegin, parend

• These bracket statements or blocks to be done in parallel
• Eliminates gotos and goto-like structures
• Example:

parbegin
a ← x + y
b ← z + 1

parend
c ← a – b;
d ← c + 1

April 8, 2022 ECS 150, Operating Systems 12



Comments

• Advantages
• easy to read
• uses principles of modular programming
• avoids goto-like structures

• Disadvantages
• not as powerful as the fork-join-quit primitives

April 8, 2022 ECS 150, Operating Systems 13



Why?

• Consider the concept of proper nesting
• S(a, b): represents serial execution of processes a, b
• P(a, b): represents parallel execution of processes a, b
• A process flow graph is properly nested if it can be described by P, S, 

and functional composition

April 8, 2022 ECS 150, Operating Systems 14



Example of Proper Nesting

April 8, 2022 ECS 150, Operating Systems 15

• The program
parbegin

a ← x + y
b ← z + 1

parend
c ← a – b;
d ← c + 1

The process flow graph The functional representation

P(a, b)
S(P(a, b), c)
S(S(P(a, b), c)), d)

So it is properly nested



Another Example

CLAIM: This is not properly nested

PROOF: For something to be properly nested, it must ne of 
the form S(pi, pj) or P(pi, pj) at most interior level.
It’s not P(pi, pj) as there are no constructs of that form in 
the graph.
All serially connected processes pi, pj have at least 1 more 
process pk starting or finishing at the node nij between pi
and pj; but if S(pi, pj) is the innermost level, there cannot 
be any such pk, because if it existed, another, more 
interior P or S must be present, contradiction. So it’s not 
S(pi, pj) either.

April 8, 2022 ECS 150, Operating Systems 16



What This Means

• fork, join, quit can represent more complex structures than parbegin
and parent
• parbegin, parend require the process flow graph to be properly 

nested

April 8, 2022 ECS 150, Operating Systems 17



The Problem with Process Interaction

• Consider the following implementation of the producer-consumer 
problem
• One process (producer) generates items that it must pass to the other 

process (consumer)
• Consumer must wait for the producer to produce an item
• Producer must not produce more items when buffer is full

• Sometimes called the bounded buffer problem

April 8, 2022 ECS 150, Operating Systems 18



The Problem with Process Interaction

• The variables
• buffer and counter are shared variables
• counter can assume values between 0 and n inclusive

var buffer: array [0..n-1] of item;
in, out: 0...n-1; 

counter: 0...n 

April 8, 2022 ECS 150, Operating Systems 19



Producer and Consumer Code

• Producer code
producer:

repeat 

make next p;
while counter = n do

(* nothing *); 

buffer[in] ← next p;
in ← (in+1) mod n;
counter ← counter + 1; 

until false; 

• Consumer code
consumer: 

repeat 

while counter = 0 do 

(* nothing *); 

next ← buffer[out];
out ← (out + 1) mod n
counter ← counter - 1; 

until false;

April 8, 2022 ECS 150, Operating Systems 20



Does It Work In Parallel?

• Suppose counter is 5, and consider the lines counter ← counter + 1 
and counter ← counter – 1.
• They could compile into the following:
counter = counter + 1: counter ← counter – 1:
P1: r1 ← counter C1: r2 ← counter
P2: r1 ← r1 + 1 C2: r2 ← r2 – 1
P3: counter ← r1 C3: counter ← r2

April 8, 2022 ECS 150, Operating Systems 21



A Race Condition

• Depending on how the statements intermingle, you get different 
values for count

• P1 P2 C1 C2 P3 C3 counter is 4
• P1 P2 P3 C1 C2 C3 counter is 5
• P1 P2 C1 C2 C3 P3 counter is 6

April 8, 2022 ECS 150, Operating Systems 22



Critical Section Problem

• Critical section: block of code that only one process at a time can 
execute
• When one process is in its critical section, no other process can be in its 

corresponding critical section
• Problem: design a protocol to do this
• Generic description of solution framework:

entry section
critical section
exit section
remainder section

April 8, 2022 ECS 150, Operating Systems 23



Requirements for Solution

• Mutual Exclusion: at most 1 process can be in the critical section at 
any time
• Progress: if no process is in the critical section, and several other 

processes wish to enter, then only processes not in the remainder 
section can take part in deciding which process enters
• Bounded Wait: a bound on the number of times other processes are 

allowed to enter the critical section after a process asks to enter the 
critical section and before it is allowed to

Implicit assumption: each process runs at non-zero speed, but no 
assumption is made as to relative speed

April 8, 2022 ECS 150, Operating Systems 24



Background

• We use 2 processes, pi and pj

• Either i = 0 and j = 1 or j = 0 and i = 1
• Current process is always pi and the other one is pj

• First, we’ll analyze several proposed solutions

April 8, 2022 ECS 150, Operating Systems 25



Proposed Solution 1

var turn: 0..1; // whose turn it is

while turn ≠ i do // … entry section

/* nothing */

. . . // … critical section

turn = j; // … exit section

April 8, 2022 ECS 150, Operating Systems 26



Proposed Solution 1 Analysis

• Mutual exclusion? Yes; turn can only have 1 value, and second line 
blocks the process that does not have that value from entering critical 
section
• Progress? No; processes must enter the critical section in alternate 

order; so a process in the remainder section takes part in deciding 
which process enters the critical section

April 8, 2022 ECS 150, Operating Systems 27



Proposed Solution 2

var inCS: array[0..1] of boolean = false;

// who is in critical section

while inCS[j] do // … entry section

/* nothing */

inCS[i] = true

. . . // … critical section

inCS[i] = false; // … exit section

April 8, 2022 ECS 150, Operating Systems 28



Proposed Solution 2 Analysis

• Mutual Exclusion: No; suppose pi, pj execute the while statement at 
the same time. As both inCS[i] and inCS[j] are false, both 
enter the critical section.

April 8, 2022 ECS 150, Operating Systems 29



Proposed Solution 3

var interested: array[0..1] of boolean = false;

// who wants to enter critical section

interested[i] = true; // … entry section

while interested[j] do

/* nothing */

. . . // … critical section

interested[i] = false; // … exit section

April 8, 2022 ECS 150, Operating Systems 30



Proposed Solution 3 Analysis

• Mutual Exclusion: Yes; a process cannot enter the critical section 
unless interested[j]is false but if a process is in the critical 
section, interested[j]must be true.
• Progress: No; suppose both processes arrive at the while statement 

at the same time; as both elements of interested[]are true, they 
loop forever

April 8, 2022 ECS 150, Operating Systems 31



Proposed Solution 4

var interested: array[0..1] of boolean = false;

// who wants to enter critical section

turn: 0..1;

interested[i] = true; // … entry section

turn = j;

while interested[j] and turn = j do

/* nothing */

. . . // … critical section

interested[i] = false; // … exit section

April 8, 2022 ECS 150, Operating Systems 32



Proposed Solution 4 Analysis

• Mutual Exclusion: Yes. pi enters the critical section only if 
interested[j] is false and turn is i. For pi, pj both to be in 
the critical section, both elements of interested[] must be 
true. Only one could have passed the while loop (as turn is i or j but 
not both) so one does the loop (say, pj) and the other does the 
preceding lines. After the first line in entry section, both elements of 
interested[] are true, but turn is j, so only pj enters the 
critical section. So only 1 process can be in the critical section at a 
time.

April 8, 2022 ECS 150, Operating Systems 33



Proposed Solution 4 Analysis

• Progress: Yes. pi blocked from entering critical section only if it is stuck at 
the while loop, which means interested[j] is true and turn is j. If 
pj is not in the entry or critical sections, interested[j] is false and pi
goes in. 
If pj is at the while statement, turn is either i or j, and the process with 
index turn will go in. Once pi leaves the critical section, interested[i]
is false and pj can go in. If pj resets interested[j] to true, then turn is 
set to i and pi goes in. So only processes in the entry, exit, or critical section 
affect which process goes in, demonstrating progress.
• Bounded wait: Yes. At most one additional entry by pj will occur if both 

request entry at the same time, so the wait is bounded.

April 8, 2022 ECS 150, Operating Systems 34


