
Interprocess Synchronization
and Communication

April 13, 2022 ECS 150, Operating Systems 1

Problem with Semaphores

• Like fork/join/quit, semaphores are too low level
• Combine blocking with counting
• Really two separate operations, and should be treated as such

• Hard to debug
• Easy to make mistakes
• Think of typing wait when you meant to type signal
• Original name for wait (P), signal (V) even easier to mistype

• P from the Dutch passering (“passing”)
• V from the Dutch verhogen (“increase”)
• Taken from railroad signals

April 13, 2022 ECS 150, Operating Systems 2

Alternate Approach

• Key idea: data abstraction
• Think about classes in object-oriented programming
• Classes define abstract data types and the functions that can access

them
• Must access the data structures by calling functions in the class

April 13, 2022 ECS 150, Operating Systems 3

Monitors

• Implement classes, but guarantee mutual exclusion so at most 1
process can be active in the monitor (class)
• Access to the encapsulated resource (abstract data type) should be

possible only through the monitor
• Procedures in the monitor are mutually exclusive
• When 1 process is executing within the monitor, other processes calling

procedures within monitor are delayed until the process currently in monitor
leaves the monitor

April 13, 2022 ECS 150, Operating Systems 4

Synchronization

• Define a condition variable with 2 operations:
• x.wait: block process; it goes onto a queue associated with the

condition variable x
• x.signal: if any process is blocked on condition variable x, unblock one

of them; if not, this is ignored
• Difference between these and semaphores is these do not maintain

signal (ie, are memoryless)
• If signal(sem) given and no process blocked on sem, the next process to

encounter a wait(sem) does not block
• If x.signal given an no process blocked on x, the next process to encounter an
x.wait will block

April 13, 2022 ECS 150, Operating Systems 5

Problem with signal

• Process 1 blocked on x.wait
• Process 2 executes x.signal
• Which process proceeds?
• Only 1 process can be active in the monitor at a time

• Does process 1 wait for process 2 to leave the monitor, or vice versa?

April 13, 2022 ECS 150, Operating Systems 6

Process 1 Continues

• C. A. R. Hoare’s approach
• Process 2 waits until process 1 blocks on a wait or leaves the monitor
• Process 2 has priority over processes waiting to enter the monitor
• Leads to simpler, more elegant proofs of solutions to problems

April 13, 2022 ECS 150, Operating Systems 7

Process 2 Continues

• Lampson and Redell’s approach; used in programming language Mesa
• Idea is that Hoare’s approach may lead to the “logical” condition that

process 1 blocked on being false by the time process 2 leaves the
monitor
• Under this scheme, the monitor must say

while not B do x.wait;
rather than

if not B do x.wait;

April 13, 2022 ECS 150, Operating Systems 8

Example: Binary Semaphores

• A binary semaphore is 0 or 1 (false or true)
• signal(bsem) sets binary semaphore bsem to 1 (true)
• To implement this with monitors, define the condition variable

notbusy on which blocked processes will wait
• Boolean variable busy says whether binary semaphore is set (true, 1)

or not (false, 0)
• Initially the caller of wait passes it; then subsequent ones block, until

a signal releases one

April 13, 2022 ECS 150, Operating Systems 9

Example: Binary Semaphores

binary_semaphore: monitor;
var busy: boolean;

notbusy: condition

(* wait *)
procedure entry wait;
begin

if busy then
notbusy.wait;

busy := true;
end;

April 13, 2022 ECS 150, Operating Systems 10

Example: Binary Semaphores

procedure entry signal;
begin

busy := false;
notbusy.signal;

end;
begin

busy := false;
end.

April 13, 2022 ECS 150, Operating Systems 11

Example Use

Process 1:

. . .
bsem.wait;
(* critical section *)
bsem.signal;
. . .

Process 2:

. . .
bsem.wait;
(* critical section *)
bsem.signal;

. . .

April 13, 2022 ECS 150, Operating Systems 12

bsem: binary_semaphore;

Producer-Consumer Solution with Monitors

buffer: monitor
var array slots[0..n-1] of item;

count, in, out: integer;
notempty, notfull: condition;

April 13, 2022 ECS 150, Operating Systems 13

Producer-Consumer Solution with Monitors

procedure deposit(data: item)
begin

if count = n then
notfull.wait;

slots[in] := data;
in := in + 1 mod n;
count := count + 1;
notempty.signal;

end;

April 13, 2022 ECS 150, Operating Systems 14

Producer-Consumer Solution with Monitors

procedure extract(var data: item)
begin

if count = 0 then
notempty.wait;

data := slots[out];
out := out + 1 mod n;
count := count - 1;
notfull.signal;

end;

April 13, 2022 ECS 150, Operating Systems 15

Producer-Consumer Solution with Monitors

begin
count := 0;
in := 0;
out := 0;

end.

April 13, 2022 ECS 150, Operating Systems 16

Analysis

Producer:
• If buffer full, block on notfull
• Otherwise (or after), deposit data, add 1 to number in buffer, increment

index so next deposit goes into next slot
• If any process is blocked on notempty, unblock it
Consumer:
• If buffer empty, block on notempty
• Otherwise (or after), extract data, subtract 1 from number in buffer,

decrement index so next extraction is from next slot
• If any process is blocked on notfull, unblock it

April 13, 2022 ECS 150, Operating Systems 17

First Readers-Writers Problem Solution

readerwriter: monitor;
var readcount: integer;

writing: boolean;
oktoread, oktowrite: condition;

April 13, 2022 ECS 150, Operating Systems 18

First Readers-Writers Problem Solution

procedure beginread

begin

readcount := readcount + 1;

if writing then

oktoread.wait;

end;

procedure endread

begin

readcount := readcount - 1;

if readcount = 0 then

oktowrite.signal;

end;

April 13, 2022 ECS 150, Operating Systems 19

First Readers-Writers Problem Solution

procedure beginwrite
begin

if readcount > 0 or writing then
oktowrited.wait;

writing := true;
end;

procedure endwrite
begin

var i: integer;

writing := false;
if readcount > 0 then

for i := 1 to readcount do
oktoread.signal;

else
oktowrite.signal;

end;

April 13, 2022 ECS 150, Operating Systems 20

First Readers-Writers Problem Solution

begin
readcount :=0;
writing := false;

end.

April 13, 2022 ECS 150, Operating Systems 21

Analysis

Readers on entry:
• Add in another reader
• Block on condition oktoread if there is a writer
• Otherwise, or when unblocked, go in
Readers on exit:
• Subtract a reader as it is exiting critical section
• If no more readers, signal any waiting writer that it can go in

April 13, 2022 ECS 150, Operating Systems 22

Analysis

Writers on entry:
• If any process (reader or writer) in critical section, block on condition

oktowrite
• Otherwise, or when unblocked, set writing to true to indicate a writer

is entering
Writers on exit:
• Set writing to false to indicate writer is leaving critical section
• Unblock any readers that are waiting on condition oktoread
• If none waiting, unblock a writer if any are waiting

April 13, 2022 ECS 150, Operating Systems 23

Implementing Monitors with Semaphores

• Operating system has semaphores
• Programming language/environment implements monitors
• Compiler must translate monitors into semaphores
• In this version, processes that signal and as a result block are to be

restarted before any process waiting to enter the monitor
• Processes signaling block on semaphore urgent
• Processes entering block on semaphore mutex

• Monitor condition variable x represented by semaphore xcond

April 13, 2022 ECS 150, Operating Systems 24

Variables

mutex, urgent, xcond: semaphore;

urgentcount, xcondcount: integer;

April 13, 2022 ECS 150, Operating Systems 25

Monitor Procedure

• Each procedure in the monitor set up like this:

mutex.wait;

(* procedure body *)

if urgentcount > 0 then

urgent.signal;

else

mutex.signal;

April 13, 2022 ECS 150, Operating Systems 26

Monitor Waits

• Replace each x.wait with:
xcondcount := xcondcount + 1;

if urgentcount > 0 then

urgent.signal;
else

mutex.signal;

Xcond.wait;

xcondcount := xcondcount - 1;

April 13, 2022 ECS 150, Operating Systems 27

Monitor Signals

• Replace each x.signal with:
urgentcount := urgentcount + 1;

if xcondcount > 0 then

begin
xcond.signal;

urgent.wait;

end

urgentcount := urgentcount – 1;

April 13, 2022 ECS 150, Operating Systems 28

