
Interprocess Synchronization
and Communication

April 15, 2022 ECS 150, Operating Systems 1

Monitors and Priority Waits

• Monitor signals restart processes in FIFO ordering
• Sometimes a priority ordering is better
• For example, waiting for a specific time of day

• Syntax: c.wait(p)
• p: integer priority
• c: condition variable

• If more than 1 process waiting on c, then if another process sends
c.signal, the one with the lowest p would be unblocked

April 15, 2022 ECS 150, Operating Systems 2

Example: Alarm Clock

• Process calls alarmclock.wakeme(n) and suspends for n seconds
• We’re assuming the hardware invokes procedure tick to update the

clock every second
alarmclock: monitor

now: integer;

wakeup: condition;

April 15, 2022 ECS 150, Operating Systems 3

Example: Alarm Clock
procedure wakeme(n: integer)
begin

alarmsetting := now + n;
while now < alarmsetting do

wakeup.wait(alarmsetting);
wakeup.signal;

end;
procedure tick
begin

now := now + 1;
wakeup.signal;

end
end.

April 15, 2022 ECS 150, Operating Systems 4

Eventcounters and Sequencers

• Provide synchronization without mutual exclusion
• Can provide mutual exclusion, but need not

April 15, 2022 ECS 150, Operating Systems 5

Eventcounters

• Eventcounter e is a non-decreasing integer initially 0

• advance(e): e := e + 1
• This is atomic, indicates an event of interest occurred

• read(e): return(e)
• So if e is n, at lease n advance(e)s have occurred

• await(e, v): block until e has value v
• So continues only after at least v advance(e)s have occurred

April 15, 2022 ECS 150, Operating Systems 6

Sequencers

• Sequencer e is an increasing integer initially 0

• ticket(s): olds := s; s := s + 1; return(olds);
• This is atomic, and requires mutual exclusion so no 2 calls return same value

• Enables mutual exclusion:
await(e, ticket(s));
. . .
advance(e);

April 15, 2022 ECS 150, Operating Systems 7

Producer-Consumer Solution

var nextp, nextc: item;
IN, OUT: eventcounter;
T: sequencer;

• IN, OUT synchronize the producers and consumers so at most 1
accesses the buffer

April 15, 2022 ECS 150, Operating Systems 8

Producer-Consumer Solution

procedure producer;
begin

var t: integer;
while true do begin

(* produce item in nextp *)
t := ticket(T);
await(IN, t);
await(OUT, t - N + 1);
buffer[(t + 1) mod N] := nextp;
advance(IN);

end;
end;

April 15, 2022 ECS 150, Operating Systems 9

Producer-Consumer Solution

procedure consumer;
begin

var i: integer;
i := 1;
while true do begin

await(IN, i);
nextc := buffer[i mod N];
(* consume item in nextc *)
advance(OUT);
i := i + 1;

end;
end;

April 15, 2022 ECS 150, Operating Systems 10

Producer-Consumer Solution

parbegin
producer;
consumer;

parend

April 15, 2022 ECS 150, Operating Systems 11

Analysis

• For producer: first producer grabs a ticket; it will be 0
• IN is also 0, so you pass first await() — this orders the producers trying to get

in so at most 1 will proceed
• OUT is 0, so you pass second await() — this checks that there are open slots in

the buffer
• Add item to buffer
• Increment eventcounter IN — this releases any producers waiting to proceed

past the first await()

April 15, 2022 ECS 150, Operating Systems 12

Analysis

• For producer: first producer grabs a ticket; it will be 0
• IN is also 0, so you pass first await() — this orders the producers trying to get

in so at most 1 will proceed
• OUT is 0, so you pass second await() — this checks that there are open slots in

the buffer
• Add item to buffer
• Increment eventcounter IN — this releases any producers waiting to proceed

past the first await()

April 15, 2022 ECS 150, Operating Systems 13

Analysis

• For consumer: note i is initially set to 1
• IN is more than 1 only if 1 producer has advanced IN, which happens only

when a producer inserts an item into the buffer
• The consumer extracts the item from the buffer
• It then advances OUT to indicate there is an empty slot in the buffer
• Increment i by 1 to advance to the next slot in the buffer

April 15, 2022 ECS 150, Operating Systems 14

Analysis

• Mutual exclusion: the key is that ticket(T) is atomic and always issues
the next number, so no two ts will have the same value
Given that, as IN is incremented only when a producer exits the
critical section, at most 1 producer can be in the critical section
Note consumer also waits on IN, until its value is no less than the
temporary variable in the for loop; as IN can only have 1 value, if
consumer is in, producer blocks at await(IN, t) and vice versa

April 15, 2022 ECS 150, Operating Systems 15

Analysis

• Progress: only processes in the entry or exit sections control
advancing IN, OUT and issuing sequence numbers
• Bounded wait: for producers, as tickets are increasing in value, they

enter in the order they received their ticket, and at most have to wait
until the number of processes that is the value of the ticket enter
(and, usually, considerably fewer)
For consumer, they enter when IN is equal to the number i; there is at
most 1 instance of this, and so at most IN consumers and producers
could have entered.

April 15, 2022 ECS 150, Operating Systems 16

Shared Memory Synchronization

• Sometimes none of the above mechanisms are satisfactory:
• Security considerations may prevent sharing memory

Example: each process must run in strict isolation, in its own logical space
with all interactions under its own control; this is not possible with monitor,
as any process with access to the monitor can get global data stored within
the monitor.

• It may not be possible to share memory
Example: in a distributed system, each processor may have its own local
memory and so processes on different processors cannot share data.

• So need a mechanism other than those based on shared memory
• New schemes are called message-based synchronization schemes.

April 15, 2022 ECS 150, Operating Systems 17

Interprocess Communication (IPC)

• Two primitive operations in all such systems:
• send(p, msg)
• Transfers message msg to process p
• Special (implementation-dependent) values of p can be used to indicate that

the message goes to all processes
• Called broadcast.

• receive(q, msg)
• Obtains message msg from process q
• Special (implementation-dependent) values of q can be used to indicate that

the message can come from any process

April 15, 2022 ECS 150, Operating Systems 18

Characterizations

• Four basic properties
• Does the sender wait until its message is accepted by the recipient, or does it

continue processing?
• What happens when a receive call is issued, but there is no message waiting?
• Must the sender specify exactly 1 recipient, or can messages be sent to any

(or all) of a number of recipients?
• Must the recipient specify exactly 1 sender, or can messages be accepted

from any (or all) of a number of senders?

April 15, 2022 ECS 150, Operating Systems 19

Sending Message

• Does the sender wait until its message is accepted by the recipient, or
does it continue processing?
• If the sender blocks, the send is called blocking or synchronous
• If the sender may proceed while the message is being delivered, send

is non-blocking or asynchronous

April 15, 2022 ECS 150, Operating Systems 20

Receive But No Message

• What happens when a receive call is issued, but there is no message
waiting?
• If the process waits for a message to arrive, the receive is called blocking or

synchronous
• If the process continues, the receive is called nonblocking or asynchronous

April 15, 2022 ECS 150, Operating Systems 21

Related: Size of Queue

Queue associated with connection or link between the two processes,
has a capacity for a certain number of messages
• Zero capacity: link cannot have any messages waiting; sender must

wait until recipient gets message or message will be lost; most useful
when sending from buffer in the process
• Sometimes called rendezvous

• Bounded capacity: limits the number of messages that can be on the
queue; if full, sender must wait or message will be lost
• Unbounded capacity: all messages can be stored in the queue

April 15, 2022 ECS 150, Operating Systems 22

Explicit Naming

• Also called direct communication
• Link is established automatically; processes need each others’ identity
• Link associated with exactly 2 processes (sender, receiver)
• At most 1 link between the 2 processes
• Link is bidirectional
• Variant: sender specifies recipient, but recipient will accept messages

from any sender; when receive function returns, it also returns the
name of the sending process
• Problem: if a process changes its name, all references to it have to be

changed

April 15, 2022 ECS 150, Operating Systems 23

Example: Producer Consumer Problem

procedure producer;
begin

while true do begin
// produce a nextp
send(“Consumerprocess”, nextp);

end;
end;
procedure consumer;
begin

while true do begin
receive(“Consumerprocess”, nextc);
// consume nextc

end;
end;

April 15, 2022 ECS 150, Operating Systems 24

Implicit Naming

• Also called indirect communication
• Messages go to a mailbox or drop box
• Link exists only if they share something like a mailbox
• Link associated with any number of processes
• Any number of links can exit between processes
• Links can be unidirectional or bidirectional

April 15, 2022 ECS 150, Operating Systems 25

Summary Chart

send blocking non-blocking

explicit naming send message to receiver; wait until message
accepted

send message to receiver

implicit naming broadcast message; wait until all processes
accept messages

broadcast message

April 15, 2022 ECS 150, Operating Systems 26

receive blocking non-blocking

explicit naming wait for message from named sender if there is a message from the named
sender, get it; otherwise, proceed

implicit naming wait for message from any sender if there is a message from any snder, get
it; otherwise, proceed

Example: Producer Consumer Problem

procedure producer;
begin

while true do begin
// produce a nextp
send(“mailbox-pc”, nextp);

end;
end;
procedure consumer;
begin

while true do begin
receive(“mailbox-pc”, nextc);
// consume nextc

end;
end;

April 15, 2022 ECS 150, Operating Systems 27

Problems

• 2 processes do a receive on mailbox; who gets message?
• Each link associated with exactly 2 processes (no problem here)
• Only 1 processes art a time may do a receive on a particular mailbox (in this

case, it’s called a port)
• System chooses which process gets message

• Creating a mailbox
• Process declares mailbox like it declares a variable; process gets all messages

put into mailbox, which goes away when process exits
• Operating system defines mailbox, system calls to send, receive messages on

it

April 15, 2022 ECS 150, Operating Systems 28

Other Issues

• Communications delay; wait until message acknowledged before
sending another
• TCP works this way

• Process terminates before message processed
• Recipient p1 waiting for message from terminated process p2 using a blocking

receive: p1 stays blocked
• Sender p1 sends message to terminated process p2 using a blocking send: p1

blocks
• Solution: notify p1 that p2 has terminated, or terminate p1

April 15, 2022 ECS 150, Operating Systems 29

Other Issues

• Message lost in transfer
• Operating system responsible for detecting this; notify sender message was

not received, or sender retransmits after some time when acknowledgement
received
• TCP works this way

• Sender responsible for detecting this and (if needed) resend message
• UDP works this way

• Messages altered in transit
• Use Message Integrity Codes (MICs) to detect this
• Example: CRCs, great for accidental changes
• Use cryptographic hashes for detecting deliberate changes (attacks)

April 15, 2022 ECS 150, Operating Systems 30

