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Remote Procedure Calls (RPC)

• Higher-level, procedural interface to IPC
• To the programmer: looks like a regular procedure call
• Procedure is in a separate address space, does not share global variables

• Each RPC needs separate process
• Reads parameters, runs remote procedure, returns result
• Done using send and receive primitives . . .
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Implementation
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Example: Producer Consumer Problem

procedure producer;
begin

while true do begin
// produce a nextp
send(“RP_guard”, nextp);

end;
end;
procedure consumer;
begin

while true do begin
receive(“RP_guard”, nextc);
// consume nextc

end;
end;
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Common Concurrency Problems

• Atomicity violation bugs
• Order violation. bugs
• Livelock
• Deadlock
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Atomicity Violation Problems

• When an operation that is supposed to be indivisible is not
• Simple example: checking permission to access file, then accessing it
if (access(file1, W_OK) < 0 ||

(fd = open(file1, O_WRONLY)) < 0){
perror(file1);
exit(1);

}
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Atomicity Violation Problems

if (access(file1, W_OK) < 0 ||
(fd = open(file1, O_WRONLY)) < 0){

perror(file1);
exit(1);

}
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Attacker executes:
rm file1
ln /etc/passwd logfile



Example from MySQL

• Thread 1
if (thd->proc_info){

fputs(thd->proc_info,  …);

• Thread 2
thd->proc_info = NULL;
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Order Violation Bug

• Two operations should be done in pone order, but instead are done in 
another order
• First order works
• Second order causes problems
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Order Violation Bug

• Thread 1

void init() {
mThread =

PR_CreateThread(mMain, …);

• Thread 2

void mMain(…) {
mState = mThread->State;
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The Fix

• When available. use locks (semaphores, etc.) to create a critical 
section among the statements to ensure indivisibility or specific order
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Livelock

• Processes loop, neither advancing until the other does
• “Livelock” as processes are active
• Example: proposed software solution #3 for concurrency
var interested: array[0..1] of boolean = false;

// who wants to enter critical section
interested[i] = true; // … entry section
while interested[j] do

/* nothing */
. . . // … critical section
interested[i] = false; // … exit section
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Deadlock

• Resource manager: the part of the kernel responsible for managing 
resources
• request: asks the resource manager to give the process a resource
• release: informs resource manager that process no longer needs a resource 

that it has been given
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Example

• A system has 2 devices, a and b
• A system has 2 processes p and q
• The following occurs
• p requests device a, and resource manager allocates it to p
• q requests device b, and resource manager allocates it to q
• p requests device b, but resource manager cannot allocate it, so p blocks until 

b becomes free
• q requests device a, but resource manager cannot allocate it, so q blocks until 

a becomes free

• Processes p and q are now deadlocked
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Deadlock vs. Starvation

• Deadlock occurs when a needed resource is never available for 
reallocation
• Starvation occurs when a needed resource is available for reallocation 

but never assigned to the process requesting it
• Example: the dining philosopher’s problem, where everyone picks up left fork, 

and puts it down, and picks it up again . . . 
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Approaches to Allocation

• Liberal: whenever a request can be granted, do so; if not, block 
process until request an be granted
• Conservative: be willing to deny a request on occasion to prevent 

deadlock
• Serialization: processes cannot hold resources concurrently, so if one 

process requests and is granted a resource, no other process can 
acquire another resource
• Example: in 2 device example, once p acquires a, q’s request for b would be 

denied
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Resource Types

• Reusable resources: these have a fixed total inventory:  none are 
created, and none destroyed.  
• Units are requested and acquired from a pool of available units and after use 

are returned to the pool where other processes can get them.
• Examples:  processors, memory, tape drives, etc.

• Consumable resources: have no fixed number of units; created 
(produced) or acquired (consumed) as needed
• Unblocked producer may release any number of units which become 

immediately available; once acquired, units cease to exist.
• Examples:  messages, information in I/O buffers, etc.

• We will not discuss deadlock analysis of consumable resources.
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Policies to Handle Deadlock

• Ignore it: okay if deadlocks are rare and users know how to recover
• Prevention: ensure deadlock can never occur
• If granting request could cause deadlock, deny request
• 4 conditions must hold for deadlock to occur

• Avoidance: use knowledge of the process’ future behavior to 
constrain the pattern of resource allocation 
• Detection and recovery: determine when a system, processes are 

deadlocked and recover from it
• Most useful when deadlocks infrequent and cost of recovery is low
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Deadlock Prevention

• A safe state is one that can never lead to deadlock
• So restrict the system so all states are safe
• Several designs for this, all based on breaking 1 of 4 conditions all of 

which must hold for deadlock to be possible
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Deadlock Prevention

Deadlock requires 4 conditions to hold simultaneously:
• Mutual exclusion: when a process has acquired a resource, no other 

process can acquire it
• No preemption: when a process has acquired a resource, it cannot be 

reallocated until the process releases it
• Circular wait, resource waiting: blocked processes form a circular chain, 

with each holding a resource requested by another member of the chain 
and holding a resource held by another member of the chain
• Hold and wait, partial allocation: a process may request resources while 

holding other resources
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Circular Wait

April 18, 2022 ECS 150, Operating Systems 21

process 1

process 2

resource 1

resource 2

acquired

acquired

requestedre
qu

es
te

d



Deadlock Prevention

• Only 1 process at a time may hold resources
• Breaks circular wait as process 2 can never acquire resources while process 1 

has any resources
• Effectively eliminates multiprogramming

• Processes must request, and acquire, all resources it might need at 
one time
• Breaks circular wait as no process can wait on a resource allocated to another 

process
• Resources may be requested but never used
• Resources may be allocated long before use
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Deadlock Prevention

• Classes of resources are ordered, and constraints placed upon 
ordering resources in different classes
• Called hierarchical ordering policy or ordered resource policy

• How: divide resources into n classes
• Process can request allocations from class ci if and only if it has no allocation 

from classes ci+1, …, cn
• If it needs to get such a resource, it must release all resources it has and 

request them too
• Breaks hold and wait as processes do not hold resources when blocked 

awaiting another resource assignment
• Some resources must be allocated before a process needs it
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Deadlock Avoidance

• Use Banker’s Algorithm, which determines if system is in a safe or 
unsafe state by trying to finish
• Example: if a request is granted, then after that:

process p1 has 4 resource units, needs 4 more
process p2 has 2 resource units, needs 1 more
process p3 has 2 resource units, needs 7 more
2 resource units are available
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Deadlock Avoidance

1. Satisfy p2; then
process p1 has 4 resource units, needs 4 more
process p3 has 2 resource units, needs 7 more
4 resource units are available

2. Satisfy p1; then
process p3 has 2 resource units, needs 7 more
8 resource units are available

3. Satisfy p3; all processes finished
So this is a safe state and the request is granted
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Deadlock Avoidance

• Example: if a request is granted, then after that:
process p1 has 4 resource units, needs 4 more
process p2 has 2 resource units, needs 1 more
process p3 has 3 resource units, needs 6 more
1 resource unit are available
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Deadlock Avoidance

1. Satisfy p2; then
process p1 has 4 resource units, needs 4 more
process p3 has 3 resource units, needs 6 more
3 resource units are available

p1, p3 cannot finish
So this is an unsafe state and the request is denied
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Problems with Banker’s Algorithm

1. Banker’s algorithm requires a fixed number of resources
• If something goes off line for repair or maintenance, the system may be put 

into an unsafe state without any action by the processes;

2. Banker’s algorithm requires a fixed number of processes
• This is unreasonable, especially in time sharing systems.

3. Banker's algorithm guarantees all requests will be granted in a finite 
time
• But printing your program (due today) next year grants your request in a finite 

time.  You need a better guarantee than that!
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Problems with Banker’s Algorithm

4. Banker's algorithm requires jobs to release their resources in a 
finite time
• Suppose a process grabs a resource and then blocks indefinitely, waiting for 

an external event to occur.  Again, you need a better guarantee that that!

5. Banker's algorithm requires users to know and state process needs 
in advance.
• Infeasible in many cases (especially in time-sharing)
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Deadlock Detection and Recovery

• System generates a resource graph
• It looks for loops
• If it finds one, it breaks it
• It can reallocate resources
• It can terminate processes
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