
Interprocess Synchronization 
and Communication

April 18, 2022 ECS 150, Operating Systems 1



Remote Procedure Calls (RPC)

• Higher-level, procedural interface to IPC
• To the programmer: looks like a regular procedure call
• Procedure is in a separate address space, does not share global variables

• Each RPC needs separate process
• Reads parameters, runs remote procedure, returns result
• Done using send and receive primitives . . .

April 18, 2022 ECS 150, Operating Systems 2



Implementation

April 18, 2022 ECS 150, Operating Systems 3

send(RP_guard, parameters) receive(caller, parameters)

RP parameters)

send(caller, results)receive(RP_guard, results)

caller process RP_guard process



Example: Producer Consumer Problem

procedure producer;
begin

while true do begin
// produce a nextp
send(“RP_guard”, nextp);

end;
end;
procedure consumer;
begin

while true do begin
receive(“RP_guard”, nextc);
// consume nextc

end;
end;

April 18, 2022 ECS 150, Operating Systems 4



Common Concurrency Problems

• Atomicity violation bugs
• Order violation. bugs
• Livelock
• Deadlock

April 18, 2022 ECS 150, Operating Systems 5



Atomicity Violation Problems

• When an operation that is supposed to be indivisible is not
• Simple example: checking permission to access file, then accessing it
if (access(file1, W_OK) < 0 ||

(fd = open(file1, O_WRONLY)) < 0){
perror(file1);
exit(1);

}

April 18, 2022 ECS 150, Operating Systems 6



Atomicity Violation Problems

if (access(file1, W_OK) < 0 ||
(fd = open(file1, O_WRONLY)) < 0){

perror(file1);
exit(1);

}

April 18, 2022 ECS 150, Operating Systems 7

Attacker executes:
rm file1
ln /etc/passwd logfile



Example from MySQL

• Thread 1
if (thd->proc_info){

fputs(thd->proc_info,  …);

• Thread 2
thd->proc_info = NULL;

April 18, 2022 ECS 150, Operating Systems 8



Order Violation Bug

• Two operations should be done in pone order, but instead are done in 
another order
• First order works
• Second order causes problems

April 18, 2022 ECS 150, Operating Systems 9



Order Violation Bug

• Thread 1

void init() {
mThread =

PR_CreateThread(mMain, …);

• Thread 2

void mMain(…) {
mState = mThread->State;

April 18, 2022 ECS 150, Operating Systems 10



The Fix

• When available. use locks (semaphores, etc.) to create a critical 
section among the statements to ensure indivisibility or specific order

April 18, 2022 ECS 150, Operating Systems 11



Livelock

• Processes loop, neither advancing until the other does
• “Livelock” as processes are active
• Example: proposed software solution #3 for concurrency
var interested: array[0..1] of boolean = false;

// who wants to enter critical section
interested[i] = true; // … entry section
while interested[j] do

/* nothing */
. . . // … critical section
interested[i] = false; // … exit section

April 18, 2022 ECS 150, Operating Systems 12



Deadlock

• Resource manager: the part of the kernel responsible for managing 
resources
• request: asks the resource manager to give the process a resource
• release: informs resource manager that process no longer needs a resource 

that it has been given

April 18, 2022 ECS 150, Operating Systems 13



Example

• A system has 2 devices, a and b
• A system has 2 processes p and q
• The following occurs
• p requests device a, and resource manager allocates it to p
• q requests device b, and resource manager allocates it to q
• p requests device b, but resource manager cannot allocate it, so p blocks until 

b becomes free
• q requests device a, but resource manager cannot allocate it, so q blocks until 

a becomes free

• Processes p and q are now deadlocked

April 18, 2022 ECS 150, Operating Systems 14



Deadlock vs. Starvation

• Deadlock occurs when a needed resource is never available for 
reallocation
• Starvation occurs when a needed resource is available for reallocation 

but never assigned to the process requesting it
• Example: the dining philosopher’s problem, where everyone picks up left fork, 

and puts it down, and picks it up again . . . 

April 18, 2022 ECS 150, Operating Systems 15



Approaches to Allocation

• Liberal: whenever a request can be granted, do so; if not, block 
process until request an be granted
• Conservative: be willing to deny a request on occasion to prevent 

deadlock
• Serialization: processes cannot hold resources concurrently, so if one 

process requests and is granted a resource, no other process can 
acquire another resource
• Example: in 2 device example, once p acquires a, q’s request for b would be 

denied

April 18, 2022 ECS 150, Operating Systems 16



Resource Types

• Reusable resources: these have a fixed total inventory:  none are 
created, and none destroyed.  
• Units are requested and acquired from a pool of available units and after use 

are returned to the pool where other processes can get them.
• Examples:  processors, memory, tape drives, etc.

• Consumable resources: have no fixed number of units; created 
(produced) or acquired (consumed) as needed
• Unblocked producer may release any number of units which become 

immediately available; once acquired, units cease to exist.
• Examples:  messages, information in I/O buffers, etc.

• We will not discuss deadlock analysis of consumable resources.

April 18, 2022 ECS 150, Operating Systems 17



Policies to Handle Deadlock

• Ignore it: okay if deadlocks are rare and users know how to recover
• Prevention: ensure deadlock can never occur
• If granting request could cause deadlock, deny request
• 4 conditions must hold for deadlock to occur

• Avoidance: use knowledge of the process’ future behavior to 
constrain the pattern of resource allocation 
• Detection and recovery: determine when a system, processes are 

deadlocked and recover from it
• Most useful when deadlocks infrequent and cost of recovery is low

April 18, 2022 ECS 150, Operating Systems 18



Deadlock Prevention

• A safe state is one that can never lead to deadlock
• So restrict the system so all states are safe
• Several designs for this, all based on breaking 1 of 4 conditions all of 

which must hold for deadlock to be possible

April 18, 2022 ECS 150, Operating Systems 19



Deadlock Prevention

Deadlock requires 4 conditions to hold simultaneously:
• Mutual exclusion: when a process has acquired a resource, no other 

process can acquire it
• No preemption: when a process has acquired a resource, it cannot be 

reallocated until the process releases it
• Circular wait, resource waiting: blocked processes form a circular chain, 

with each holding a resource requested by another member of the chain 
and holding a resource held by another member of the chain
• Hold and wait, partial allocation: a process may request resources while 

holding other resources

April 18, 2022 ECS 150, Operating Systems 20



Circular Wait

April 18, 2022 ECS 150, Operating Systems 21

process 1

process 2

resource 1

resource 2

acquired

acquired

requestedre
qu

es
te

d



Deadlock Prevention

• Only 1 process at a time may hold resources
• Breaks circular wait as process 2 can never acquire resources while process 1 

has any resources
• Effectively eliminates multiprogramming

• Processes must request, and acquire, all resources it might need at 
one time
• Breaks circular wait as no process can wait on a resource allocated to another 

process
• Resources may be requested but never used
• Resources may be allocated long before use

April 18, 2022 ECS 150, Operating Systems 22



Deadlock Prevention

• Classes of resources are ordered, and constraints placed upon 
ordering resources in different classes
• Called hierarchical ordering policy or ordered resource policy

• How: divide resources into n classes
• Process can request allocations from class ci if and only if it has no allocation 

from classes ci+1, …, cn
• If it needs to get such a resource, it must release all resources it has and 

request them too
• Breaks hold and wait as processes do not hold resources when blocked 

awaiting another resource assignment
• Some resources must be allocated before a process needs it

April 18, 2022 ECS 150, Operating Systems 23



Deadlock Avoidance

• Use Banker’s Algorithm, which determines if system is in a safe or 
unsafe state by trying to finish
• Example: if a request is granted, then after that:

process p1 has 4 resource units, needs 4 more
process p2 has 2 resource units, needs 1 more
process p3 has 2 resource units, needs 7 more
2 resource units are available

April 18, 2022 ECS 150, Operating Systems 24



Deadlock Avoidance

1. Satisfy p2; then
process p1 has 4 resource units, needs 4 more
process p3 has 2 resource units, needs 7 more
4 resource units are available

2. Satisfy p1; then
process p3 has 2 resource units, needs 7 more
8 resource units are available

3. Satisfy p3; all processes finished
So this is a safe state and the request is granted

April 18, 2022 ECS 150, Operating Systems 25



Deadlock Avoidance

• Example: if a request is granted, then after that:
process p1 has 4 resource units, needs 4 more
process p2 has 2 resource units, needs 1 more
process p3 has 3 resource units, needs 6 more
1 resource unit are available

April 18, 2022 ECS 150, Operating Systems 26



Deadlock Avoidance

1. Satisfy p2; then
process p1 has 4 resource units, needs 4 more
process p3 has 3 resource units, needs 6 more
3 resource units are available

p1, p3 cannot finish
So this is an unsafe state and the request is denied

April 18, 2022 ECS 150, Operating Systems 27



Problems with Banker’s Algorithm

1. Banker’s algorithm requires a fixed number of resources
• If something goes off line for repair or maintenance, the system may be put 

into an unsafe state without any action by the processes;

2. Banker’s algorithm requires a fixed number of processes
• This is unreasonable, especially in time sharing systems.

3. Banker's algorithm guarantees all requests will be granted in a finite 
time
• But printing your program (due today) next year grants your request in a finite 

time.  You need a better guarantee than that!

April 18, 2022 ECS 150, Operating Systems 28



Problems with Banker’s Algorithm

4. Banker's algorithm requires jobs to release their resources in a 
finite time
• Suppose a process grabs a resource and then blocks indefinitely, waiting for 

an external event to occur.  Again, you need a better guarantee that that!

5. Banker's algorithm requires users to know and state process needs 
in advance.
• Infeasible in many cases (especially in time-sharing)

April 18, 2022 ECS 150, Operating Systems 29



Deadlock Detection and Recovery

• System generates a resource graph
• It looks for loops
• If it finds one, it breaks it
• It can reallocate resources
• It can terminate processes

April 18, 2022 ECS 150, Operating Systems 30


