Interprocess Synchronization
and Communication

Remote Procedure Calls (RPC)

* Higher-level, procedural interface to IPC

* To the programmer: looks like a regular procedure call
* Procedure is in a separate address space, does not share global variables

* Each RPC needs separate process
* Reads parameters, runs remote procedure, returns result
* Done using send and receive primitives . ..

Implementation

caller process RP_guard process

send(RP_guard, parameters) » receive(caller, parameters)

|

RP parameters)

|

receive(RP_guard, results) -« send(caller, results)

Example: Producer Consumer Problem

procedure producer;
begin
while true do begin
// produce a nextp
send(“RP_guard”, nextp);

end;
end;
procedure consumer;
begin

while true do begin
receive (”RP_guard”, nextc);
// consume nextc
end;
end;

Common Concurrency Problems

* Atomicity violation bugs
* Order violation. bugs

* Livelock

* Deadlock

Atomicity Violation Problems

* When an operation that is supposed to be indivisible is not
* Simple example: checking permission to access file, then accessing it
if (access(filel, W OK) < 0 ||
(fd = open(filel, O WRONLY)) < 0){
perror(filel);
exit(1l);

Atomicity Violation Problems

if (access(filel, W OK) < 0 ||

(fd = open(filel, O WRONLY)) < 0){
perror(filel);
exit(1l);
}

Attacker executes: /
rm filel

ln /etc/passwd logfile

Example from MySQL

e Thread 1 e Thread 2

if (thd->proc_info) { thd >proc_info = NULL;
fputs(thd->proc_info, ..);

Order Violation Bug

* Two operations should be done in pone order, but instead are done in
another order

* First order works
* Second order causes problems

Order Violation Bug

e Thread 1 e Thread 2
void init() { void mMain(...) {
mThread = mState = mThread->State;

PR_CreateThread(mMain, ...);

The Fix

* When available. use locks (semaphores, etc.) to create a critical
section among the statements to ensure indivisibility or specific order

Livelock

* Processes loop, neither advancing until the other does
* “Livelock” as processes are active
* Example: proposed software solution #3 for concurrency

var interested: array[0..1] of boolean = false;
// who wants to enter critical section

interested[i] true; // .. entry section
while interested[]] do
/* nothing */
. . // .. critical section

interested[i] = false; // .. exit section

Deadlock

* Resource manager: the part of the kernel responsible for managing
resources
* request: asks the resource manager to give the process a resource

* release: informs resource manager that process no longer needs a resource
that it has been given

Example

* A system has 2 devices, aand b
* A system has 2 processes p and g

* The following occurs
* p requests device a, and resource manager allocates it to p
* g requests device b, and resource manager allocates it to g

* p requests device b, but resource manager cannot allocate it, so p blocks until
b becomes free

* g requests device a, but resource manager cannot allocate it, so g blocks until
a becomes free

* Processes p and g are now deadlocked

Deadlock vs. Starvation

* Deadlock occurs when a needed resource is never available for
reallocation

e Starvation occurs when a needed resource is available for reallocation
but never assigned to the process requesting it

 Example: the dining philosopher’s problem, where everyone picks up left fork,
and puts it down, and picks it up again.. ..

Approaches to Allocation

* Liberal: whenever a request can be granted, do so; if not, block
process until request an be granted

* Conservative: be willing to deny a request on occasion to prevent
deadlock

e Serialization: processes cannot hold resources concurrently, so if one
process requests and is granted a resource, no other process can
acquire another resource

 Example: in 2 device example, once p acquires a, q’s request for b would be
denied

Resource Types

* Reusable resources: these have a fixed total inventory: none are
created, and none destroyed.

* Units are requested and acquired from a pool of available units and after use
are returned to the pool where other processes can get them.

* Examples: processors, memory, tape drives, etc.

e Consumable resources: have no fixed number of units; created
(produced) or acquired (consumed) as needed

* Unblocked producer may release any number of units which become
immediately available; once acquired, units cease to exist.

* Examples: messages, information in |/O buffers, etc.
* We will not discuss deadlock analysis of consumable resources.

Policies to Handle Deadlock

* Ignore it: okay if deadlocks are rare and users know how to recover

 Prevention: ensure deadlock can never occur
* |f granting request could cause deadlock, deny request
e 4 conditions must hold for deadlock to occur

* Avoidance: use knowledge of the process’ future behavior to
constrain the pattern of resource allocation

* Detection and recovery: determine when a system, processes are
deadlocked and recover from it

* Most useful when deadlocks infrequent and cost of recovery is low

Deadlock Prevention

* A safe state is one that can never lead to deadlock
* So restrict the system so all states are safe

* Several designs for this, all based on breaking 1 of 4 conditions all of
which must hold for deadlock to be possible

Deadlock Prevention

Deadlock requires 4 conditions to hold simultaneously:

* Mutual exclusion: when a process has acquired a resource, no other
process can acquire it

* No preemption: when a process has acquired a resource, it cannot be
reallocated until the process releases it
e Circular wait, resource waiting: blocked processes form a circular chain,

with each holding a resource requested by another member of the chain
and holding a resource held by another member of the chain

* Hold and wait, partial allocation: a process may request resources while
holding other resources

Circular Wait

acquired
proces)l » resource 1
T 1 -
L 3
O -
S D
o 4]
Q D
— 1 QO
acquired /
resource 2 |t process 2

Deadlock Prevention

* Only 1 process at a time may hold resources

 Breaks circular wait as process 2 can never acquire resources while process 1
has any resources

 Effectively eliminates multiprogramming

* Processes must request, and acquire, all resources it might need at
one time

* Breaks circular wait as no process can wait on a resource allocated to another
process

* Resources may be requested but never used
* Resources may be allocated long before use

Deadlock Prevention

* Classes of resources are ordered, and constraints placed upon
ordering resources in different classes

» Called hierarchical ordering policy or ordered resource policy

e How: divide resources into n classes

* Process can request allocations from class ¢; if and only if it has no allocation
from classes ¢;,4, ..., C,

* If it needs to get such a resource, it must release all resources it has and
request them too

* Breaks hold and wait as processes do not hold resources when blocked
awaiting another resource assignment

* Some resources must be allocated before a process needs it

Deadlock Avoidance

e Use Banker’s Algorithm, which determines if system is in a safe or
unsafe state by trying to finish

 Example: if a request is granted, then after that:
process p, has 4 resource units, needs 4 more
process p, has 2 resource units, needs 1 more

process p; has 2 resource units, needs 7 more
2 resource units are available

Deadlock Avoidance

1. Satisfy p,; then
process p, has 4 resource units, needs 4 more

process p; has 2 resource units, needs 7 more
4 resource units are available

2. Satisfy p;; then
process p; has 2 resource units, needs 7 more

8 resource units are available
3. Satisfy p3; all processes finished
So this is a safe state and the request is granted

Deadlock Avoidance

 Example: if a request is granted, then after that:
process p, has 4 resource units, needs 4 more
process p, has 2 resource units, needs 1 more

process p; has 3 resource units, needs 6 more
1 resource unit are available

Deadlock Avoidance

1. Satisfy p,; then

process p; has 4 resource units, needs 4 more
process p; has 3 resource units, needs 6 more
3 resource units are available

p1, p5 cannot finish
So this is an unsafe state and the request is denied

Problems with Banker’s Algorithm

1. Banker’s algorithm requires a fixed number of resources

* |f something goes off line for repair or maintenance, the system may be put
into an unsafe state without any action by the processes;

2. Banker’s algorithm requires a fixed number of processes
* This is unreasonable, especially in time sharing systems.

3. Banker's algorithm guarantees all requests will be granted in a finite
time
* But printing your program (due today) next year grants your request in a finite
time. You need a better guarantee than that!

Problems with Banker’s Algorithm

4. Banker's algorithm requires jobs to release their resources in a
finite time
* Suppose a process grabs a resource and then blocks indefinitely, waiting for
an external event to occur. Again, you need a better guarantee that that!

5. Banker's algorithm requires users to know and state process needs
in advance.

* Infeasible in many cases (especially in time-sharing)

Deadlock Detection and Recovery

e System generates a resource graph
* It looks for loops

* |f it finds one, it breaks it

* |t can reallocate resources
* |t can terminate processes

