Memory Management



MFT Process Scheduling

* When process enters system, goes into a process queue

e Scheduler takes memory requirements of process, sizes of available
regions
* When a region of the right size becomes available, process moved into it
* Process then goes on ready queue
* When it finishes, memory region freed, new process brought in



MFT Memory Allocation

* Need to classify processes based on memory needs
* User specifies maximum size
e System can (try to) determine it automatically

* Methods take number of queues, region size, swapping, and
scheduling algorithm into account



Methods: Multiple Queues

 Each memory region has its own associate queue, and process goes
into queue of smallest region it will fit into

* Example:
e System has 100K, 200K, and larger regions
* 98K, 170K processes go into queues associated with 100K, 200K regions



Methods: Single Queues

* All processes go into 1 queue, and when scheduler selects next
process to run, it waits for the partition to become available

* Example: 100K, 200K regions have their own queues
* 98K process goes into queue associated with 100K region
e 170K process goes into queue associated with 200K region

* |f 1MB partition became available, neither process would be put in it as they
are not on its queue



Methods: Single Queue

* All processes go into 1 queue, and when scheduler selects next
process to run, it waits for the partition to become available

* Example:
* Each process has an associated region with it (use same as before)
* 98K process enters queue, then 175K process enters queue
e 200K region becomes free

* As next process in ready queue goes into 100K region, not 200K region, it
does not run until 100K region becomes free

e Key point: 200K region remains empty until 100K region becomes free and
98K process moved into it



Methods: Single Queue

* All processes go into 1 queue, and scheduler goes down ready queue
and picks next process that would fit into an associated region

* Example:
* Each process has an associated region with it (use same as before)
* 98K process enters queue, then 175K process enters queue
e 200K region becomes free
» Scheduler skips over 98K process (as that fits into 100K region)
* Scheduler picks 175K process to run in 200K region

* Scheduler selects next process that fits into free partition even of
higher priority processes are ahead of it but are too large to run



Methods: Single Queue

* All processes go into 1 queue, and scheduler goes down ready queue
and picks next process that would fit into any free region

* Example:
* 98K process enters queue, then 175K process enters queue
e 200K region becomes free

* Scheduler puts 98K process into 200K region as it is the first region that is free
and that 98K job will fit



Methods: Single Queue + Swapping

e Swap processes based on which region they are in

* Example: 3 regions, and all jobs associated with a region scheduled
using round robin
* Quantum expires

* Memory manager begins swapping out process in the region and swapping in
another process associated with that region

* CPU scheduler gives quantum to process in another region

* Memory manager must be able to swap processes fast enough so
there are always processes in memory ready to execute when CPU is
rescheduled



Methods: Single Queue + Swapping

* When high priority process comes in and a lower priority process is
using the region where it would normally go, swap out lower priority
process for the higher one

* When higher priority process done, swap lower priority process in
 Called roll-out/roll-in

* Which region does a swapped process return to?
* Static relocation: process must return to its original partition
* Dynamic relocation: process can return to some other partition



Problems

* Process needs more memory than region has
 MFT gives process fixed amount of memory

* How is this handled?

* Terminate process

e Return control to process with an error indication that request cannot be
satisfied

* Swap out process until a large enough region becomes available
* Works only if using dynamic relocation



Problems

* Process needs more memory than region has
 MFT gives process fixed amount of memory

* How is this handled?

* Terminate process

e Return control to process with an error indication that request cannot be
satisfied

* Swap out process until a large enough region becomes available
* Works only if using dynamic relocation



Problems

e System has 100K available

* Almost all process are 20K, but one is 80K and only runs for ten
minutes a day

* Then in best case, you can run 3 processes at a time, and you waste
60K (20K process in an 80K partition)

* So make the regions vary in size!



Preface to What Follows

* In MFT, address translation is static; that is, it is set when the program
is loaded into memory

* Moving the program requires recalculating the relocation addresses
* Alternative: relocate addresses during execution
* This uses special hardware



Dynamic Relocation

* As each memory reference occurs, transform those that refer to main
memory

* As noted earlier, deals with sequence of memory references only
e Use base and limit (bounds) registers

* In hardware:

* Check the memory reference does not exceed value in limit register; if it does,
give error

* Add contents of base register to memory reference
* Access the transformed address



Address Translation

* Transformation of a virtual address into a physical one

* With this, address spaces can be moved during execution
* And that’s dynamic relocation

* Note: limit register may contain physical address of end of address
space
* |f so, reverse the order of checking and adding
* Equivalent to earlier method



Hardware Requirements

* Base and limit registers

* Privileged instructions to store values in them
* Must be privileged!

* Provided by a Memory Management Unit (MMU)

* Now the MMU does a lot more; the basic idea is the above, though

* Processor status word (PSW) needs to indicate whether system is in
privileged mode
e Usually this is a set of bits
 Sometimes PSW is called Processor Status Longword (PSL)



Hardware Requirements

* CPU must generate exceptions (aka traps, interrupts) when a process
references memory outside its address space
* Stop process execution

* Jump to address indicated by interrupt/trap table
* Each exception has address of routine to jump to



Operating System Requirements

* Operating system must track where in memory processes are, and
what memory is not in use
* Called a free list

* Allocate space to processes to be used as address space
» Search the free list for chunk of memory of appropriate size

* Reclaim memory from terminated process
* Put it onto free list so other processes can use it



Operating System Requirements

* Save and restore base and bounds registers during context switch
* When execution switches from one process to another

* Saved values put into area associated with single process
» Usually Process Control Block (PCB), a collection of information about a process

* Handle exceptions
* Functions to be called when exception occurs

 Example: when bounds register exceeded, throw an exception, causing
execution to transfer to function associated with attempt to access memory

outside address space
* Unless altered by process, exception handlers usually (but not always)
terminate process



MVT

e Multiple Contiguous Variable Partition Allocation (MVT)
 Like MFT, but partition size varies dynamically

* Operating system tracks which parts of memory are in use
* Free parts of memory often called holes
* Done in a number of ways, such as bit maps, linked lists, skip lists, etc.



Example

mon.
40

queue
(1) 60K
(2)100K
(3) 30K
(4) 70K
(5) 50K

DN

256

* Processes placed in holes; if hole is too big, it is split and

mon.

40
(1)

in 100
(2) |
in

(3)
in 200

(1)

(2)

230
256

(3)

2

(4)

in

BN/,
200

mon.

(1)

100

(4)

(3)
7

230
256

unused portion goes back onto free list
* At process termination, add its memory to free list

April 22, 2022

ECS 150, Operating Systems

256

22



Memory Allocation Schemes

* Best fit: holes listed in order of increasing size
* Process is put into the smallest hole it fits

* Worst fit: holes listed in order of decreasing size
e Process is put into the first hole in the list

* First fit: holes listed in order of increasing base address
* Process is put into the first hole it fits

* Next fit: like first- fit, except the search for a hole the job fits begins where
the last one left off.

* (5) buddy system deals with memory in sizes of 2i fori < k. There is a
separate list for each size of hole. Put the job into a hole of the closest
power of 2; if it takes up under half, return the unused half to the free list.



Memory Allocation Schemes

* Buddy system: Memory kept in sizes of 2/ for i < k

e Separate list for each size of hole

* Process put into hole of the closest power of 2

 |f it takes up under half, return
unused half to the free list

 Example: memory of 16K,

process requires 3K of memory
* So needs to go into a 4K chunk

16K

8K —»

8K

4K

S

4K |-

3K goes

here



Process Scheduling

* Scheduler keeps list of available block sizes, queue of processes
waiting for memory

* Order jobs according to scheduling algorithm
* Allocate memory until not enough for next process

* Two approaches:
 Skip to next process in queue that can fit into available memory
* Wait until enough memory available for next process



Fragmentation

* Internal fragmentation: wasted space in partition
* With MVT, little to no internal fragmentation

* External fragmentation: wasted space between partition
* With MVT, much external fragmentation



Fragmentation

* Example: process 5 can run simultaneously with 1, 3, 4 were the two
holes combined (56K); but they were not, so 56K of fragmentation

mon. mon. mon.
* (1) ol @ ol o PIe
queue
(1) 60K done 100 done'188m
(2)100K (2)
(3) 30K (2} (4) (4)
(4) 70K (3) (4) 170 (5) 1705
| 230 230
S
256% 256% 256/

April 22, 2022 ECS 150, Operating Systems



Compaction

* Moving contents of memory about in order to combine holes

* Example: in above, move 3’s memory in third figure to 1710K
 Combines holes in 170K-200K and 230K-256K to get 1 hole in 200K-256K
* Now 5 can run

* Need dynamic relocation
* Copy contents of process memory
* Update base register appropriately



Compaction Schemes

* Move all processes to one end of memory
* Can get expensive in time

* Move enough processes to get needed amount of contiguous
memory

* Example: CDC 6600 Scope Operating System kept 8 processes in main
memory at a time
* Used compaction on process termination
* Kept 1 hole at bottom of main memory



Reducing External Fragmentation

* Reduce average process memory size
* Break memory in 2 parts, one for instructions, one for data

* Example: PDP-11 had 2 base/bounds register pairs

* High order bit of each indicated which half of memory (high or low) the pair
refers to

* |Instructions, read-only data go into high half of memory
* Variables, etc. go into low half of memory



More on Memory Fragmentation

* Process needs w words of memory
* Partition has p words

* Internal fragmentation exists whenw—-p >0
* i.e., memory internal to partition not being used

* Externakl fragmentation exists whenw—-p <0
* j.e., partition unused and available but is too small for any waiting process



Memory Fragmentation Example

e 22K of memory available
* Divided into partitions of sizes 4K, 4K, 4K, 10K

* In queue: 7K, 3K, 6K process memory requirements
» 7K process goes into 10K partition; 3K internal fragmentation
* 3K process goes into 4K partition; 1K internal fragmentation
* 6K process waits
e 2 4K partitions unused, so 8K external fragmentation

* Total fragmentation: 8K external, 4K internal, so 12K total
* Over 50% of memory in fragments!



Memory Fragmentation Example

e 22K of memory available
* Divided into partitions of sizes 4K, 8K, 10K

* In queue: 7K, 3K, 6K process memory requirements
* 7K process goes into 8K partition; 1K internal fragmentation
* 3K process goes into 4K partition; 1K internal fragmentation
* 6K process goes into 10K partition; 4K internal fragmentation
* all partitions used, so no external fragmentation

* Total fragmentation: OK external, 6K internal, so 6K total
* Only 27% of memory in fragments



