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MFT Process Scheduling

• When process enters system, goes into a process queue
• Scheduler takes memory requirements of process, sizes of available 

regions 
• When a region of the right size becomes available, process moved into it
• Process then goes on ready queue
• When it finishes, memory region freed, new process brought in
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MFT Memory Allocation

• Need to classify processes based on memory needs
• User specifies maximum size
• System can (try to) determine it automatically

• Methods take number of queues, region size, swapping, and 
scheduling algorithm into account
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Methods: Multiple Queues

• Each memory region has its own associate queue, and process goes 
into queue of smallest region it will fit into
• Example: 
• System has 100K, 200K, and larger regions
• 98K, 170K processes go into queues associated with 100K, 200K regions
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Methods: Single Queues

• All processes go into 1 queue, and when scheduler selects next 
process to run, it waits for the partition to become available
• Example: 100K, 200K regions have their own queues
• 98K process goes into queue associated with 100K region
• 170K process goes into queue associated with 200K region
• If 1MB partition became available, neither process would be put in it as they 

are not on its queue
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Methods: Single Queue

• All processes go into 1 queue, and when scheduler selects next 
process to run, it waits for the partition to become available
• Example: 
• Each process has an associated region with it (use same as before)
• 98K process enters queue, then 175K process enters queue
• 200K region becomes free
• As next process in ready queue goes into 100K region, not 200K region, it 

does not run until 100K region becomes free
• Key point: 200K region remains empty until 100K region becomes free and 

98K process moved into it
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Methods: Single Queue

• All processes go into 1 queue, and scheduler goes down ready queue 
and picks next process that would fit into an associated region
• Example: 
• Each process has an associated region with it (use same as before)
• 98K process enters queue, then 175K process enters queue
• 200K region becomes free
• Scheduler skips over 98K process (as that fits into 100K region)
• Scheduler picks 175K process to run in 200K region

• Scheduler selects next process that fits into free partition even of 
higher priority processes are ahead of it but are too large to run
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Methods: Single Queue

• All processes go into 1 queue, and scheduler goes down ready queue 
and picks next process that would fit into any free region
• Example: 
• 98K process enters queue, then 175K process enters queue
• 200K region becomes free
• Scheduler puts 98K process into 200K region as it is the first region that is free 

and that 98K job will fit
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Methods: Single Queue + Swapping

• Swap processes based on which region they are in
• Example: 3 regions, and all jobs associated with a region scheduled 

using round robin
• Quantum expires
• Memory manager begins swapping out process in the region and swapping in 

another process associated with that region
• CPU scheduler gives quantum to process in another region

• Memory manager must be able to swap processes fast enough so 
there are always processes in memory ready to execute when CPU is 
rescheduled
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Methods: Single Queue + Swapping

• When high priority process comes in and a lower priority process is 
using the region where it would normally go, swap out lower priority 
process for the higher one
• When higher priority process done, swap lower priority process in
• Called roll-out/roll-in

• Which region does a swapped process return to?
• Static relocation: process must return to its original partition
• Dynamic relocation: process can return to some other partition
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Problems

• Process needs more memory than region has
• MFT gives process fixed amount of memory

• How is this handled?
• Terminate process
• Return control to process with an error indication that request cannot be 

satisfied
• Swap out process until a large enough region becomes available

• Works only if using dynamic relocation
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Problems

• System has 100K available
• Almost all process are 20K, but one is 80K and only runs for ten 

minutes a day
• Then in best case, you can run 3 processes at a time, and you waste 

60K (20K process in an 80K partition)
• So make the regions vary in size!
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Preface to What Follows

• In MFT, address translation is static; that is, it is set when the program 
is loaded into memory
• Moving the program requires recalculating the relocation addresses
• Alternative: relocate addresses during execution
• This uses special hardware
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Dynamic Relocation

• As each memory reference occurs, transform those that refer to main 
memory
• As noted earlier, deals with sequence of memory references only

• Use base and limit (bounds) registers
• In hardware:
• Check the memory reference does not exceed value in limit register; if it does, 

give error
• Add contents of base register to memory reference
• Access the transformed address
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Address Translation

• Transformation of a virtual address into a physical one
• With this, address spaces can be moved during execution
• And that’s dynamic relocation

• Note: limit register may contain physical address of end of address 
space
• If so, reverse the order of checking and adding
• Equivalent to earlier method

April 22, 2022 ECS 150, Operating Systems 16



Hardware Requirements

• Base and limit registers
• Privileged instructions to store values in them
• Must be privileged!

• Provided by a Memory Management Unit (MMU)
• Now the MMU does a lot more; the basic idea is the above, though

• Processor status word (PSW) needs to indicate whether system is in 
privileged mode
• Usually this is a set of bits
• Sometimes PSW is called Processor Status Longword (PSL)
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Hardware Requirements

• CPU must generate exceptions (aka traps, interrupts) when a process 
references memory outside its address space
• Stop process execution
• Jump to address indicated by interrupt/trap table

• Each exception has address of routine to jump to

April 22, 2022 ECS 150, Operating Systems 18



Operating System Requirements

• Operating system must track where in memory processes are, and 
what memory is not in use
• Called a free list

• Allocate space to processes to be used as address space
• Search the free list for chunk of memory of appropriate size

• Reclaim memory from terminated process
• Put it onto free list so other processes can use it
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Operating System Requirements

• Save and restore base and bounds registers during context switch
• When execution switches from one process to another
• Saved values put into area associated with single process

• Usually Process Control Block (PCB), a collection of information about a process

• Handle exceptions
• Functions to be called when exception occurs
• Example: when bounds register exceeded, throw an exception, causing 

execution to transfer to function associated with attempt to access memory 
outside address space
• Unless altered by process, exception handlers usually (but not always) 

terminate process
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MVT

• Multiple Contiguous Variable Partition Allocation (MVT)
• Like MFT, but partition size varies dynamically
• Operating system tracks which parts of memory are in use
• Free parts of memory often called holes
• Done in a number of ways, such as bit maps, linked lists, skip lists, etc.
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Example
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• Processes placed in holes; if hole is too big, it is split and 
unused portion goes back onto free list

• At process termination, add its memory to free list



Memory Allocation Schemes

• Best fit: holes listed in order of increasing size
• Process is put into the smallest hole it fits

• Worst fit: holes listed in order of decreasing size
• Process is put into the first hole in the list

• First fit: holes listed in order of increasing base address
• Process is put into the first hole it fits

• Next fit: like first- fit, except the search for a hole the job fits begins where 
the last one left off. 
• (5) buddy system deals with memory in sizes of 2i for i < k. There is a 

separate list for each size of hole. Put the job into a hole of the closest 
power of 2; if it takes up under half, return the unused half to the free list. 
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Memory Allocation Schemes

• Buddy system: Memory kept in sizes of 2i for i < k
• Separate list for each size of hole
• Process put into hole of the closest power of 2

• If it takes up under half, return 
unused half to the free list

• Example: memory of 16K, 
process requires 3K of memory

• So needs to go into a 4K chunk
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Process Scheduling

• Scheduler keeps list of available block sizes, queue of processes 
waiting for memory
• Order jobs according to scheduling algorithm
• Allocate memory until not enough for next process
• Two approaches:
• Skip to next process in queue that can fit into available memory
• Wait until enough memory available for next process
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Fragmentation

• Internal fragmentation: wasted space in partition
• With MVT, little to no internal fragmentation

• External fragmentation: wasted space between partition
• With MVT, much external fragmentation

April 22, 2022 ECS 150, Operating Systems 26



Fragmentation

• Example: process 5 can run simultaneously with 1, 3, 4 were the two 
holes combined (56K); but they were not, so 56K of fragmentation
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Compaction

• Moving contents of memory about in order to combine holes
• Example: in above, move 3’s memory in third figure to 1710K
• Combines holes in 170K-200K and 230K-256K to get 1 hole in 200K-256K
• Now 5 can run

• Need dynamic relocation
• Copy contents of process memory
• Update base register appropriately
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Compaction Schemes

• Move all processes to one end of memory
• Can get expensive in time

• Move enough processes to get needed amount of contiguous 
memory
• Example: CDC 6600 Scope Operating System kept 8 processes in main 

memory at a time
• Used compaction on process termination
• Kept 1 hole at bottom of main memory
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Reducing External Fragmentation

• Reduce average process memory size
• Break memory in 2 parts, one for instructions, one for data
• Example: PDP-11 had 2 base/bounds register pairs
• High order bit of each indicated which half of memory (high or low) the pair 

refers to
• Instructions, read-only data go into high half of memory
• Variables, etc. go into low half of memory
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More on Memory Fragmentation

• Process needs w words of memory
• Partition has p words
• Internal fragmentation exists when w – p > 0
• i.e., memory internal to partition not being used

• Externakl fragmentation exists when w – p < 0
• i.e., partition unused and available but is too small for any waiting process
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Memory Fragmentation Example

• 22K of memory available
• Divided into partitions of sizes 4K, 4K, 4K, 10K
• In queue: 7K, 3K, 6K process memory requirements
• 7K process goes into 10K partition; 3K internal fragmentation
• 3K process goes into 4K partition; 1K internal fragmentation
• 6K process waits
• 2 4K partitions unused, so 8K external fragmentation

• Total fragmentation: 8K external, 4K internal, so 12K total
• Over 50% of memory in fragments!
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Memory Fragmentation Example

• 22K of memory available
• Divided into partitions of sizes 4K, 8K, 10K
• In queue: 7K, 3K, 6K process memory requirements
• 7K process goes into 8K partition; 1K internal fragmentation
• 3K process goes into 4K partition; 1K internal fragmentation
• 6K process goes into 10K partition; 4K internal fragmentation
• all partitions used, so no external fragmentation

• Total fragmentation: 0K external, 6K internal, so 6K total
• Only 27% of memory in fragments
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