
Memory Management

April 22, 2022 ECS 150, Operating Systems 1



MFT Process Scheduling

• When process enters system, goes into a process queue
• Scheduler takes memory requirements of process, sizes of available 

regions 
• When a region of the right size becomes available, process moved into it
• Process then goes on ready queue
• When it finishes, memory region freed, new process brought in

April 22, 2022 ECS 150, Operating Systems 2



MFT Memory Allocation

• Need to classify processes based on memory needs
• User specifies maximum size
• System can (try to) determine it automatically

• Methods take number of queues, region size, swapping, and 
scheduling algorithm into account

April 22, 2022 ECS 150, Operating Systems 3



Methods: Multiple Queues

• Each memory region has its own associate queue, and process goes 
into queue of smallest region it will fit into
• Example: 
• System has 100K, 200K, and larger regions
• 98K, 170K processes go into queues associated with 100K, 200K regions

April 22, 2022 ECS 150, Operating Systems 4



Methods: Single Queues

• All processes go into 1 queue, and when scheduler selects next 
process to run, it waits for the partition to become available
• Example: 100K, 200K regions have their own queues
• 98K process goes into queue associated with 100K region
• 170K process goes into queue associated with 200K region
• If 1MB partition became available, neither process would be put in it as they 

are not on its queue

April 22, 2022 ECS 150, Operating Systems 5



Methods: Single Queue

• All processes go into 1 queue, and when scheduler selects next 
process to run, it waits for the partition to become available
• Example: 
• Each process has an associated region with it (use same as before)
• 98K process enters queue, then 175K process enters queue
• 200K region becomes free
• As next process in ready queue goes into 100K region, not 200K region, it 

does not run until 100K region becomes free
• Key point: 200K region remains empty until 100K region becomes free and 

98K process moved into it

April 22, 2022 ECS 150, Operating Systems 6



Methods: Single Queue

• All processes go into 1 queue, and scheduler goes down ready queue 
and picks next process that would fit into an associated region
• Example: 
• Each process has an associated region with it (use same as before)
• 98K process enters queue, then 175K process enters queue
• 200K region becomes free
• Scheduler skips over 98K process (as that fits into 100K region)
• Scheduler picks 175K process to run in 200K region

• Scheduler selects next process that fits into free partition even of 
higher priority processes are ahead of it but are too large to run

April 22, 2022 ECS 150, Operating Systems 7



Methods: Single Queue

• All processes go into 1 queue, and scheduler goes down ready queue 
and picks next process that would fit into any free region
• Example: 
• 98K process enters queue, then 175K process enters queue
• 200K region becomes free
• Scheduler puts 98K process into 200K region as it is the first region that is free 

and that 98K job will fit

April 22, 2022 ECS 150, Operating Systems 8



Methods: Single Queue + Swapping

• Swap processes based on which region they are in
• Example: 3 regions, and all jobs associated with a region scheduled 

using round robin
• Quantum expires
• Memory manager begins swapping out process in the region and swapping in 

another process associated with that region
• CPU scheduler gives quantum to process in another region

• Memory manager must be able to swap processes fast enough so 
there are always processes in memory ready to execute when CPU is 
rescheduled

April 22, 2022 ECS 150, Operating Systems 9



Methods: Single Queue + Swapping

• When high priority process comes in and a lower priority process is 
using the region where it would normally go, swap out lower priority 
process for the higher one
• When higher priority process done, swap lower priority process in
• Called roll-out/roll-in

• Which region does a swapped process return to?
• Static relocation: process must return to its original partition
• Dynamic relocation: process can return to some other partition

April 22, 2022 ECS 150, Operating Systems 10



Problems

• Process needs more memory than region has
• MFT gives process fixed amount of memory

• How is this handled?
• Terminate process
• Return control to process with an error indication that request cannot be 

satisfied
• Swap out process until a large enough region becomes available

• Works only if using dynamic relocation

April 22, 2022 ECS 150, Operating Systems 11



Problems

• Process needs more memory than region has
• MFT gives process fixed amount of memory

• How is this handled?
• Terminate process
• Return control to process with an error indication that request cannot be 

satisfied
• Swap out process until a large enough region becomes available

• Works only if using dynamic relocation

April 22, 2022 ECS 150, Operating Systems 12



Problems

• System has 100K available
• Almost all process are 20K, but one is 80K and only runs for ten 

minutes a day
• Then in best case, you can run 3 processes at a time, and you waste 

60K (20K process in an 80K partition)
• So make the regions vary in size!

April 22, 2022 ECS 150, Operating Systems 13



Preface to What Follows

• In MFT, address translation is static; that is, it is set when the program 
is loaded into memory
• Moving the program requires recalculating the relocation addresses
• Alternative: relocate addresses during execution
• This uses special hardware

April 22, 2022 ECS 150, Operating Systems 14



Dynamic Relocation

• As each memory reference occurs, transform those that refer to main 
memory
• As noted earlier, deals with sequence of memory references only

• Use base and limit (bounds) registers
• In hardware:
• Check the memory reference does not exceed value in limit register; if it does, 

give error
• Add contents of base register to memory reference
• Access the transformed address

April 22, 2022 ECS 150, Operating Systems 15



Address Translation

• Transformation of a virtual address into a physical one
• With this, address spaces can be moved during execution
• And that’s dynamic relocation

• Note: limit register may contain physical address of end of address 
space
• If so, reverse the order of checking and adding
• Equivalent to earlier method

April 22, 2022 ECS 150, Operating Systems 16



Hardware Requirements

• Base and limit registers
• Privileged instructions to store values in them
• Must be privileged!

• Provided by a Memory Management Unit (MMU)
• Now the MMU does a lot more; the basic idea is the above, though

• Processor status word (PSW) needs to indicate whether system is in 
privileged mode
• Usually this is a set of bits
• Sometimes PSW is called Processor Status Longword (PSL)

April 22, 2022 ECS 150, Operating Systems 17



Hardware Requirements

• CPU must generate exceptions (aka traps, interrupts) when a process 
references memory outside its address space
• Stop process execution
• Jump to address indicated by interrupt/trap table

• Each exception has address of routine to jump to

April 22, 2022 ECS 150, Operating Systems 18



Operating System Requirements

• Operating system must track where in memory processes are, and 
what memory is not in use
• Called a free list

• Allocate space to processes to be used as address space
• Search the free list for chunk of memory of appropriate size

• Reclaim memory from terminated process
• Put it onto free list so other processes can use it

April 22, 2022 ECS 150, Operating Systems 19



Operating System Requirements

• Save and restore base and bounds registers during context switch
• When execution switches from one process to another
• Saved values put into area associated with single process

• Usually Process Control Block (PCB), a collection of information about a process

• Handle exceptions
• Functions to be called when exception occurs
• Example: when bounds register exceeded, throw an exception, causing 

execution to transfer to function associated with attempt to access memory 
outside address space
• Unless altered by process, exception handlers usually (but not always) 

terminate process

April 22, 2022 ECS 150, Operating Systems 20



MVT

• Multiple Contiguous Variable Partition Allocation (MVT)
• Like MFT, but partition size varies dynamically
• Operating system tracks which parts of memory are in use
• Free parts of memory often called holes
• Done in a number of ways, such as bit maps, linked lists, skip lists, etc.

April 22, 2022 ECS 150, Operating Systems 21



Example

April 22, 2022 ECS 150, Operating Systems 22

• Processes placed in holes; if hole is too big, it is split and 
unused portion goes back onto free list

• At process termination, add its memory to free list



Memory Allocation Schemes

• Best fit: holes listed in order of increasing size
• Process is put into the smallest hole it fits

• Worst fit: holes listed in order of decreasing size
• Process is put into the first hole in the list

• First fit: holes listed in order of increasing base address
• Process is put into the first hole it fits

• Next fit: like first- fit, except the search for a hole the job fits begins where 
the last one left off. 
• (5) buddy system deals with memory in sizes of 2i for i < k. There is a 

separate list for each size of hole. Put the job into a hole of the closest 
power of 2; if it takes up under half, return the unused half to the free list. 

April 22, 2022 ECS 150, Operating Systems 23



Memory Allocation Schemes

• Buddy system: Memory kept in sizes of 2i for i < k
• Separate list for each size of hole
• Process put into hole of the closest power of 2

• If it takes up under half, return 
unused half to the free list

• Example: memory of 16K, 
process requires 3K of memory

• So needs to go into a 4K chunk

April 22, 2022 ECS 150, Operating Systems 24



Process Scheduling

• Scheduler keeps list of available block sizes, queue of processes 
waiting for memory
• Order jobs according to scheduling algorithm
• Allocate memory until not enough for next process
• Two approaches:
• Skip to next process in queue that can fit into available memory
• Wait until enough memory available for next process

April 22, 2022 ECS 150, Operating Systems 25



Fragmentation

• Internal fragmentation: wasted space in partition
• With MVT, little to no internal fragmentation

• External fragmentation: wasted space between partition
• With MVT, much external fragmentation

April 22, 2022 ECS 150, Operating Systems 26



Fragmentation

• Example: process 5 can run simultaneously with 1, 3, 4 were the two 
holes combined (56K); but they were not, so 56K of fragmentation

April 22, 2022 ECS 150, Operating Systems 27



Compaction

• Moving contents of memory about in order to combine holes
• Example: in above, move 3’s memory in third figure to 1710K
• Combines holes in 170K-200K and 230K-256K to get 1 hole in 200K-256K
• Now 5 can run

• Need dynamic relocation
• Copy contents of process memory
• Update base register appropriately

April 22, 2022 ECS 150, Operating Systems 28



Compaction Schemes

• Move all processes to one end of memory
• Can get expensive in time

• Move enough processes to get needed amount of contiguous 
memory
• Example: CDC 6600 Scope Operating System kept 8 processes in main 

memory at a time
• Used compaction on process termination
• Kept 1 hole at bottom of main memory

April 22, 2022 ECS 150, Operating Systems 29



Reducing External Fragmentation

• Reduce average process memory size
• Break memory in 2 parts, one for instructions, one for data
• Example: PDP-11 had 2 base/bounds register pairs
• High order bit of each indicated which half of memory (high or low) the pair 

refers to
• Instructions, read-only data go into high half of memory
• Variables, etc. go into low half of memory

April 22, 2022 ECS 150, Operating Systems 30



More on Memory Fragmentation

• Process needs w words of memory
• Partition has p words
• Internal fragmentation exists when w – p > 0
• i.e., memory internal to partition not being used

• Externakl fragmentation exists when w – p < 0
• i.e., partition unused and available but is too small for any waiting process

April 22, 2022 ECS 150, Operating Systems 31



Memory Fragmentation Example

• 22K of memory available
• Divided into partitions of sizes 4K, 4K, 4K, 10K
• In queue: 7K, 3K, 6K process memory requirements
• 7K process goes into 10K partition; 3K internal fragmentation
• 3K process goes into 4K partition; 1K internal fragmentation
• 6K process waits
• 2 4K partitions unused, so 8K external fragmentation

• Total fragmentation: 8K external, 4K internal, so 12K total
• Over 50% of memory in fragments!

April 22, 2022 ECS 150, Operating Systems 32



Memory Fragmentation Example

• 22K of memory available
• Divided into partitions of sizes 4K, 8K, 10K
• In queue: 7K, 3K, 6K process memory requirements
• 7K process goes into 8K partition; 1K internal fragmentation
• 3K process goes into 4K partition; 1K internal fragmentation
• 6K process goes into 10K partition; 4K internal fragmentation
• all partitions used, so no external fragmentation

• Total fragmentation: 0K external, 6K internal, so 6K total
• Only 27% of memory in fragments

April 22, 2022 ECS 150, Operating Systems 33


