
Devices, Input, and Output

May 13, 2022 ECS 150, Operating Systems 1

Example: Disk Device Driver

• Must provide an illusion of a linear array of sectors that are numbered
like elements of an array
• Sector s on track t in cylinder c is numbered

a = ((c × (#tracks/cylinder) + t) × (#sectors/track) + s
so rather than referring to (c, t, s), kernel can refer to a
• Also must reduce effect of latencies of accessing disk
• Overlap I/O and computation
• Arrange large objects only one seek is needed to read/write them
• Order outstanding disk requests

May 13, 2022 ECS 150, Operating Systems 2

Ordering Disk Requests: Assumptions

• Only 1 disk drive
• All I/O requests are for single equal-size blocks
• Requested blocks distributed over disk
• Disk has only 1 moveable arm with all heads on it
• Seek latency is linear in the number of tracks crossed
• Ignores disk controller using sectors from tracks at end of disk to replace bad

sectors

• Disk controller does not introduce appreciable delays
• Read, write requests are equally fast

May 13, 2022 ECS 150, Operating Systems 3

Key Points for Evaluating Disk Access Policies

• How long must requests wait as a function of load
• Frequency of requests, measured in requests per time unit

• Mean, variance of waiting time for each request
• Low mean, high variance means some requests will take a long time

May 13, 2022 ECS 150, Operating Systems 4

Disk Access Policies

• First come, first serve (FCFS)
• Pickup
• Shortest seek time first (SSF, SSTF)
• SCAN
• N-Step SCAN
• C-SCAN

May 13, 2022 ECS 150, Operating Systems 5

First Come First Serve (FCFS)

• Requests cannot be starved; all get serviced eventually
• Fairly low variance, but becomes saturated easily
• Load becomes greater than driver can handle, so requests always waiting

• Problems
• Every request is likely to require a seek
• Great for low loads, but for high loads the latencies increase the mean of

waiting time

May 13, 2022 ECS 150, Operating Systems 6

Pickup

• FCFS but, as the head moves to the next track, any queued requests
for the tracks it passes over are serviced
• For high loads, this decreases the mean waiting time a bit

May 13, 2022 ECS 150, Operating Systems 7

Shortest Seek Time First (SSF, SSTF)

• Service the request lying on the closest track
• Saturates at the highest load of any of these policies

• Problems:
• Starvation; this means the disk can’t keep up with disk I/O requests, usually

indicating a more severe problem such as thrashing
• Variance larger than that of FCFS as innermost and outermost tracks are

serviced less frequently than others

May 13, 2022 ECS 150, Operating Systems 8

SCAN

• Head moves from outermost track to innermost, then back, etc.,
servicing requests along the way
• It reduces the problem of the innermost and outermost tracks getting

less service
• So it lowers the variance

• Problem: still subject to starvation

May 13, 2022 ECS 150, Operating Systems 9

N-Step SCAN

• Like SCAN, but when a sweep begins (going in or out), the requests in
the device queue at that time are the only ones serviced
• Arrivals after that wait for the next sweep to begin
• Starvation not possible
• Reduces variance even more

May 13, 2022 ECS 150, Operating Systems 10

Circular SCAN (C-SCAN)

• Like SCAN, but requests are serviced only when the head is moving
from outermost to innermost track
• It “jumps back” from the innermost track to the outermost track

• Eliminates problem of innermost, outermost tracks getting less
frequent service
• Waiting times also more uniform

May 13, 2022 ECS 150, Operating Systems 11

LOOK variants

• With SCAN, heads always goes to the innermost and outermost
tracks, even if there are no requests for service involving those tracks
• LOOK variants have the heads go only as far as there are outstanding

requests, and then have the head reverse direction
• Example: 200 track disk, requests for tracks 150, 90 and 70, with

heads currently at 110 and moving inward
• Handle request for track 90, then track 70
• Change direction at track 70 rather than continue inward

May 13, 2022 ECS 150, Operating Systems 12

Comparison

• Disk has 200 tracks (tracks numbered from 199 to 0)
• Head is currently at track 53
• Set of requests in the queue is

98 183 37 122 14 124 65 67
• For LOOK and SCAN, assume head is moving inward

May 13, 2022 ECS 150, Operating Systems 13

Order of Service

policy order of servicing

FCFS 98 183 37 122 14 124 65 67

PICKUP 65 67 98 122 124 183 37 14

SSTF 65 67 37 14 98 122 124 183

SCAN 37 14 65 67 98 122 124 183

LOOK 37 14 65 67 98 122 124 183

C-SCAN 37 14 183 124 122 98 67 65

C-LOOK 37 14 183 124 122 98 67 65

May 13, 2022 ECS 150, Operating Systems 14

Head Motion

May 13, 2022 ECS 150, Operating Systems 15

policy number of cylinders moved over total mean std dev

FCFS 45 85 146 85 108 110 59 2 640 80.00 44.47

PICKUP 12 2 31 24 2 59 146 23 299 37.38 47.57

SSTF 12 2 30 23 84 24 2 59 236 29.50 28.62

SCAN 16 23 79 2 31 24 2 59 236 29.50 26.97

LOOK 16 23 51 2 31 24 2 59 208 26.00 20.72

C-SCAN 16 23 231 59 2 24 31 2 388 48.35 75.93

C-LOOK 16 23 169 59 2 24 31 2 326 40.75 54.89

Number of cylinders heads move over to service each request

Waiting Time

May 13, 2022 ECS 150, Operating Systems 16

policy cumulative number of cylinders moved over total mean std dev

FCFS 45 130 276 361 469 579 638 640 3138 392.25 228.78

PICKUP 12 14 45 69 71 130 276 299 916 114.5 113.24

SSTF 12 14 44 67 151 175 177 236 876 109.50 85.60

SCAN 16 39 118 120 151 175 177 236 1032 129.00 73.12

LOOK 16 39 90 92 123 147 149 208 864 108.00 62.37

C-SCAN 16 39 270 329 331 355 386 388 2114 264.25 150.91

C-LOOK 16 39 208 267 269 293 324 326 1742 217.75 123.33

Time each request has to wait for service, in terms of cylinders crossed

Optimizations

• Sector queueing
• Policy to minimize rotational latency
• Order requests for the same track so they can be serviced with a minimum

number of rotations of disk
• Implementation: each sector has its own queue for requests
• Used only when there are extremely heavy loads

• Caching
• Read extra sectors following the one you want

May 13, 2022 ECS 150, Operating Systems 17

Process Interface

• Concept of file underlies interface
• More about this next

• Enables processes to interact with devices
• Also kernel structures such as /dev/null and /proc

• Need at least 1 special system call to handle device-specific functions

May 13, 2022 ECS 150, Operating Systems 18

System Calls: open, close

• open makes file accessible to process
• Form: descriptor = open(file, how, . . .)
• Now process uses descriptor to refer the file
• If device not ready, process may block or call may return error code
• Call also checks privileges to ensure user can open the file

• close disassociates file from process
• Form: close(descriptor)
• Device driver does any needed clean-up

May 13, 2022 ECS 150, Operating Systems 19

System Calls: seek

• seek positions pointer associated with descriptor as instructed
• Form: seek(descriptor, where)
• Read/write pointer repositioned to where
• Examples: go to arbitrary location in file, position on tape

• Linux: lseek(descriptor, offset, whence)
• whence indicates if offset is from beginning or end of descriptor, or current

position of read/write pointer
• Returns new position on success, –1 on error; but –1 may be valid value
• Disambiguate using errno

May 13, 2022 ECS 150, Operating Systems 20

System Calls: seek

• Linux: lseek example
external int errno;

. . .

errno = 0;

if (lseek(desc, offset, SEEK_SET) == -1 && errno != 0){

/* handle error */

}

else{

/* handle success */

}

May 13, 2022 ECS 150, Operating Systems 21

System Calls: read

• Transfers data from descriptor object to memory
• Form: nread = read(descriptor, memory address, amount)
• Reads nread bytes, which is at most amount
• Returns 0 on end of file, error code on error

• Form: nread = readv(descriptor, memory list, list length)
• Like read, but reads data into multiple memory locations
• Locations given in memory list; also number of bytes for each
• Returns number of bytes read, or 0 on end of file, error code on error

May 13, 2022 ECS 150, Operating Systems 22

System Calls: write

• Transfers data from memory to descriptor object
• Form: nbyte = write(descriptor, memory address, amount)
• Outputs nbyte bytes, which is at most amount
• Returns error code on error

• Form: nbyte = writev(descriptor, memory list, list length)
• Like write, but writes data from multiple memory locations
• Locations given in memory list; also number of bytes for each
• Returns number of bytes written, error code on error

May 13, 2022 ECS 150, Operating Systems 23

Blocking vs. Non-Blocking Read and Write

• Blocking transfer is synchronous
• So when the next statement is executed, transfer has been completed

• Non-blocking transfer is asynchronous
• So next statement executed whether or not transfer has been completed

• Two ways to determine when non-blocking transfer completes:
• Use polling by checking an indicator
• Use interrupts

May 13, 2022 ECS 150, Operating Systems 24

Non-Blocking Read and Write

• Process requests interrupt from kernel when transfer completes
• System call may arrange this; on Linux, it’s SIGIO

• Process must arrange to catch interrupt and process it
• Usually a system call like handler(signal, function)

• If process does need to block until transfer is complete, need a system
call like wait(descriptor, timeout)
• Blocks until transfer to or from descriptor completes
• If not completed by timeout, then wake up and continue

• Never modify memory involved in transfer until transfer completes
• Results are undefined

May 13, 2022 ECS 150, Operating Systems 25

System Calls: control

• Used for device-specific actions
• Form: control(descriptor, action, . . .)
• action is device specific and may require other parameters

• Linux example: make FAT file system read-only:
attrmask = ATTR_RO;
ioctl(desc, FAT_IOCTL_SET_ATTRIBUTES, &attrmask)

May 13, 2022 ECS 150, Operating Systems 26

Linux Examples

• Insert ch into (terminal) input queue:
toinsert = ch;
ioctl(desc, TIOCSTI, &toinsert)

• Give up role of controlling terminal:
ioctl(desc, TIOCNOTTY)

May 13, 2022 ECS 150, Operating Systems 27

