Devices, Input, and Output

Process Interface

* Concept of file underlies interface
* More about this next

* Enables processes to interact with devices
* Also kernel structures such as /dev/null and /proc

* Need at least 1 special system call to handle device-specific functions

System Calls: open, close

* open makes file accessible to process

* Form: descriptor = open(file, how, . . .)
* Now process uses descriptor to refer the file
* |f device not ready, process may block or call may return error code
* Call also checks privileges to ensure user can open the file

* close disassociates file from process

* Form: close(descriptor)
* Device driver does any needed clean-up

System Calls: seek

* seek positions pointer associated with descriptor as instructed

* Form: seek(descriptor, where)
* Read/write pointer repositioned to where
* Examples: go to arbitrary location in file, position on tape

* Linux: Iseek(descriptor, offset, whence)

* whence indicates if offset is from beginning or end of descriptor, or current
position of read/write pointer

e Returns new position on success, —1 on error; but —1 may be valid value
* Disambiguate using errno

System Calls: seek

* Linux: Iseek example

external int errno;

errno = 0;

if (lseek(desc, offset, SEEK SET) == -1 && errno != 0){
/* handle error */

}

else{

/* handle success */

System Calls: read

* Transfers data from descriptor object to memory

* Form: nread = read(descriptor, memory address, amount)
* Reads nread bytes, which is at most amount
* Returns 0 on end of file, error code on error

* Form: nread = readv(descriptor, memory list, list length)
* Like read, but reads data into multiple memory locations
* Locations given in memory list; also number of bytes for each
e Returns number of bytes read, or 0 on end of file, error code on error

System Calls: write

* Transfers data from memory to descriptor object

* Form: nbyte = write(descriptor, memory address, amount)
e Outputs nbyte bytes, which is at most amount
* Returns error code on error

* Form: nbyte = writev(descriptor, memory list, list length)
* Like write, but writes data from multiple memory locations
* Locations given in memory list; also number of bytes for each
e Returns number of bytes written, error code on error

Blocking vs. Non-Blocking Read and Write

* Blocking transfer is synchronous
* So when the next statement is executed, transfer has been completed

* Non-blocking transfer is asynchronous
* So next statement executed whether or not transfer has been completed

* Two ways to determine when non-blocking transfer completes:
* Use polling by checking an indicator
* Use interrupts

Non-Blocking Read and Write

* Process requests interrupt from kernel when transfer completes
* System call may arrange this; on Linux, it’s SIGIO

* Process must arrange to catch interrupt and process it
» Usually a system call like handler(signal, function)

* If process does need to block until transfer is complete, need a system
call like wait(descriptor, timeout)

* Blocks until transfer to or from descriptor completes
* |f not completed by timeout, then wake up and continue

* Never modify memory involved in transfer until transfer completes
* Results are undefined

System Calls: control

* Used for device-specific actions

 Form: control(descriptor, action, .. .)
 action is device specific and may require other parameters

* Linux example: make FAT file system read-only:
attrmask = ATTR_RO;
ioctl(desc, FAT IOCTL_SET_ATTRIBUTES, &attrmask)
 Linux example: insert ch into (terminal) input queue:
toinsert = ch;
ioctl(desc, TIOCSTI, &toinsert)

Linux Examples

* Make FAT file system read-only:

attrmask = ATTR_RO;

ioctl(desc, FAT IOCTL_SET_ATTRIBUTES, &attrmask)
* Insert ch into (terminal) input queue:

toinsert = ch;

ioctl(desc, TIOCSTI, &toinsert)
* Give up role of controlling terminal:

ioctl(desc, TIOCNOTTY)

File Systems

File Systems

* File: a collection of data
* virtual: how the user (process) sees the file
* physical: how the file is represented to the hardware and operating system.

* Filename: often reflects something about the file, particularly the
extension

 TOPS-20: file names are name.ext, where ext is a three-character extension
describing the file; “bas” for BASIC, “for” for FORTRAN, “bli” for BLISS, “obj”
for object, “exe” for executable, “txt” for text, and so forth

 Linux, FreeBSD, and MINIX: the last letter(s) may designate something; “.c” for
C source files, “.cc” for C++ source files, “.py” for Python files

Directories

* Files organized into directories to make organizing them easier
e “folders” for Mac, Windows

* Directory contains pairs of (name, location)

* Location may be a physical location (disk address) or an index into an array
containing those locations or any other datum used to locate files

* Example: in Linux, location is the inode number

Organization of Directories

* Flat (one-level) directories
* Hierarchical directories
e Graph-structured directories

Flat (One-Level) Directory

* All files are in the same, single directory

 Problems:

* No two files can have the same name

* To keep users having to worry about collisions, the system could make the user name a
component of each file name)

* To find a file, one must search the whole directory

Hierarchical Directory

* Impose tree structure on directories

* Typically there is a root directory, then other directories for users, system
executables, and other things

* |dentifying files: use path name
e Current working directory: where in the file system the process is currently

* Absolute path: from root directory
* Examples: /usr/bin/tcsh, /home/tanz

* Relative path: from some directory other than the root
* Examples: a/b/c; ../xyzzy; ./a.out

Graph-Structured Directory

* Basically a hierarchical system, but with the ability to alias files across
branches
* Linux, UNIX have this (contrary to popular belief)

 Direct alias: one (file) location appears twice (or more) in directories,
often with different names

* In Linux terminology, a hard link

* Indirect alias: special type of file containing path name of another file
e Said to be an indirect alias for the file it names

* Operating system interpolates the name of the file being aliased on a
reference to the indirect alias

* In Linux terminology, a symbolic link or soft link

Aliasing Issues

e No such thing as a “true” name now
* You can refer to same file with multiple names
* For hard links, no way to tell which was the original name

* Deletion: if a file is deleted under one alias, is it inaccessible using
the other aliases?
* Yes: must find all other aliases and delete them; very time-consuming

* No: use a link count to track how many aliases a file has and don’t delete file
until all aliases deleted

Aliasing Issues

* Accounting: on systems that charge by storage space used, the owner
of a file pays for storage (and other related charges)

* So if another user creates a direct alias to the file, the owner might no longer
be able to delete all references to it!

 Solution: have each person owning a link to the file (ie., owning a
directory containing a link to the file) pay a percentage of the cost of
the file

Information About File: UNIX V7 inode

struct inode {
char i_flag;
char i_count; /* reference count */
dev_t i_dev; /* device where inode resides */
ino_t i_number; /*inumber, 1-to-1 with device address */
unsigned short i_mode;

short i_nlink; /* directory entries */
short i_uid; /* owner */
short i_gid; /* group of owner */
off t i_size; /* size of file */
union {

struct {

daddr_ti_addr[13]; /* if normal file/directory */
daddr_ti_lastr; /* last logical block read (for read-ahead) */

L
struct {
daddr_ti_rdev; /*i_addr[0] */
struct group i_group; /* multiplexor group file */
L
}i_un;

Layout of Addresses in inode

block number

block number

block number

block number

block number

1 level indirection

block number

block number

1 level indirection

2 level indirection

block number

block number

1 level indirection

2 level indirection

block number

block number

1 level indirection

2 level indirection

block number

1 level indirection

2 level indirection

block number

block number

2 level indirection

block number

block number

1 level indirection

2 level indirection

3 level indirection

1 level indirection

2 level indirection

Superblock in UNIX V7

* Holds information about the file system

* Replicated in known places on disk
e So if one gets damaged, another can substitute for it

struct filsys {

unsigned short s_isize; /* size in blocks of i-list */
daddr_ts_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in's_free */
daddr_ts_free[NICFREE]; /* free block list */

short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINOD]; /* free i-node list */

char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block update */

/* remainder not maintained by this version of the system */
daddr_t s_tfree; /* total free blocks*/

ino_t s_tinode; /* total free inodes */

short s _m; /* interleave factor */

short s _n; JXUnx/

char s_fnamel[6]; /* file system name */

char s_fpack[6]; /* file system pack name */

