
Devices, Input, and Output

May 16, 2022 ECS 150, Operating Systems 1

Process Interface

• Concept of file underlies interface
• More about this next

• Enables processes to interact with devices
• Also kernel structures such as /dev/null and /proc

• Need at least 1 special system call to handle device-specific functions

May 16, 2022 ECS 150, Operating Systems 2

System Calls: open, close

• open makes file accessible to process
• Form: descriptor = open(file, how, . . .)
• Now process uses descriptor to refer the file
• If device not ready, process may block or call may return error code
• Call also checks privileges to ensure user can open the file

• close disassociates file from process
• Form: close(descriptor)
• Device driver does any needed clean-up

May 16, 2022 ECS 150, Operating Systems 3

System Calls: seek

• seek positions pointer associated with descriptor as instructed
• Form: seek(descriptor, where)
• Read/write pointer repositioned to where
• Examples: go to arbitrary location in file, position on tape

• Linux: lseek(descriptor, offset, whence)
• whence indicates if offset is from beginning or end of descriptor, or current

position of read/write pointer
• Returns new position on success, –1 on error; but –1 may be valid value
• Disambiguate using errno

May 16, 2022 ECS 150, Operating Systems 4

System Calls: seek

• Linux: lseek example
external int errno;

. . .

errno = 0;

if (lseek(desc, offset, SEEK_SET) == -1 && errno != 0){

/* handle error */

}

else{

/* handle success */

}

May 16, 2022 ECS 150, Operating Systems 5

System Calls: read

• Transfers data from descriptor object to memory
• Form: nread = read(descriptor, memory address, amount)
• Reads nread bytes, which is at most amount
• Returns 0 on end of file, error code on error

• Form: nread = readv(descriptor, memory list, list length)
• Like read, but reads data into multiple memory locations
• Locations given in memory list; also number of bytes for each
• Returns number of bytes read, or 0 on end of file, error code on error

May 16, 2022 ECS 150, Operating Systems 6

System Calls: write

• Transfers data from memory to descriptor object
• Form: nbyte = write(descriptor, memory address, amount)
• Outputs nbyte bytes, which is at most amount
• Returns error code on error

• Form: nbyte = writev(descriptor, memory list, list length)
• Like write, but writes data from multiple memory locations
• Locations given in memory list; also number of bytes for each
• Returns number of bytes written, error code on error

May 16, 2022 ECS 150, Operating Systems 7

Blocking vs. Non-Blocking Read and Write

• Blocking transfer is synchronous
• So when the next statement is executed, transfer has been completed

• Non-blocking transfer is asynchronous
• So next statement executed whether or not transfer has been completed

• Two ways to determine when non-blocking transfer completes:
• Use polling by checking an indicator
• Use interrupts

May 16, 2022 ECS 150, Operating Systems 8

Non-Blocking Read and Write

• Process requests interrupt from kernel when transfer completes
• System call may arrange this; on Linux, it’s SIGIO

• Process must arrange to catch interrupt and process it
• Usually a system call like handler(signal, function)

• If process does need to block until transfer is complete, need a system
call like wait(descriptor, timeout)
• Blocks until transfer to or from descriptor completes
• If not completed by timeout, then wake up and continue

• Never modify memory involved in transfer until transfer completes
• Results are undefined

May 16, 2022 ECS 150, Operating Systems 9

System Calls: control

• Used for device-specific actions
• Form: control(descriptor, action, . . .)
• action is device specific and may require other parameters

• Linux example: make FAT file system read-only:
attrmask = ATTR_RO;
ioctl(desc, FAT_IOCTL_SET_ATTRIBUTES, &attrmask)

• Linux example: insert ch into (terminal) input queue:
toinsert = ch;
ioctl(desc, TIOCSTI, &toinsert)

May 16, 2022 ECS 150, Operating Systems 10

Linux Examples

• Make FAT file system read-only:
attrmask = ATTR_RO;
ioctl(desc, FAT_IOCTL_SET_ATTRIBUTES, &attrmask)

• Insert ch into (terminal) input queue:
toinsert = ch;
ioctl(desc, TIOCSTI, &toinsert)

• Give up role of controlling terminal:
ioctl(desc, TIOCNOTTY)

May 16, 2022 ECS 150, Operating Systems 11

File Systems

May 16, 2022 ECS 150, Operating Systems 12

File Systems

• File: a collection of data
• virtual: how the user (process) sees the file
• physical: how the file is represented to the hardware and operating system.

• Filename: often reflects something about the file, particularly the
extension
• TOPS-20: file names are name.ext, where ext is a three-character extension

describing the file; “bas” for BASIC, “for” for FORTRAN, “bli” for BLISS, “obj”
for object, “exe” for executable, “txt” for text, and so forth
• Linux, FreeBSD, and MINIX: the last letter(s) may designate something; “.c” for

C source files, “.cc” for C++ source files, “.py” for Python files

May 16, 2022 ECS 150, Operating Systems 13

Directories

• Files organized into directories to make organizing them easier
• “folders” for Mac, Windows

• Directory contains pairs of (name, location)
• Location may be a physical location (disk address) or an index into an array

containing those locations or any other datum used to locate files
• Example: in Linux, location is the inode number

May 16, 2022 ECS 150, Operating Systems 14

Organization of Directories

• Flat (one-level) directories
• Hierarchical directories
• Graph-structured directories

May 16, 2022 ECS 150, Operating Systems 15

Flat (One-Level) Directory

• All files are in the same, single directory
• Problems:
• No two files can have the same name

• To keep users having to worry about collisions, the system could make the user name a
component of each file name)

• To find a file, one must search the whole directory

May 16, 2022 ECS 150, Operating Systems 16

Hierarchical Directory

• Impose tree structure on directories
• Typically there is a root directory, then other directories for users, system

executables, and other things

• Identifying files: use path name
• Current working directory: where in the file system the process is currently
• Absolute path: from root directory

• Examples: /usr/bin/tcsh, /home/tanz
• Relative path: from some directory other than the root

• Examples: a/b/c; ../xyzzy; ./a.out

May 16, 2022 ECS 150, Operating Systems 17

Graph-Structured Directory

• Basically a hierarchical system, but with the ability to alias files across
branches
• Linux, UNIX have this (contrary to popular belief)

• Direct alias: one (file) location appears twice (or more) in directories,
often with different names
• In Linux terminology, a hard link

• Indirect alias: special type of file containing path name of another file
• Said to be an indirect alias for the file it names
• Operating system interpolates the name of the file being aliased on a

reference to the indirect alias
• In Linux terminology, a symbolic link or soft link

May 16, 2022 ECS 150, Operating Systems 18

Aliasing Issues

• No such thing as a “true” name now
• You can refer to same file with multiple names
• For hard links, no way to tell which was the original name

• Deletion: if a file is deleted under one alias, is it inaccessible using
the other aliases?
• Yes: must find all other aliases and delete them; very time-consuming
• No: use a link count to track how many aliases a file has and don’t delete file

until all aliases deleted

May 16, 2022 ECS 150, Operating Systems 19

Aliasing Issues

• Accounting: on systems that charge by storage space used, the owner
of a file pays for storage (and other related charges)
• So if another user creates a direct alias to the file, the owner might no longer

be able to delete all references to it!

• Solution: have each person owning a link to the file (ie., owning a
directory containing a link to the file) pay a percentage of the cost of
the file

May 16, 2022 ECS 150, Operating Systems 20

Information About File: UNIX V7 inode
struct inode {

char i_flag;
char i_count; /* reference count */
dev_t i_dev; /* device where inode resides */
ino_t i_number; /* i number, 1-to-1 with device address */
unsigned short i_mode;
short i_nlink; /* directory entries */
short i_uid; /* owner */
short i_gid; /* group of owner */
off_t i_size; /* size of file */
union {

struct {
daddr_t i_addr[13]; /* if normal file/directory */
daddr_t i_lastr; /* last logical block read (for read-ahead) */

};
struct {

daddr_t i_rdev; /* i_addr[0] */
struct group i_group; /* multiplexor group file */

};
} i_un;

};

May 16, 2022 ECS 150, Operating Systems 21

Layout of Addresses in inode

May 16, 2022 ECS 150, Operating Systems 22

block number
block number
block number

block number

block number
block number

block number
block number
block number
block number

1 level indirection
2 level indirection
3 level indirection

block number
block number

block number

block number
block number

. . .
block number

. . .

1 level indirection

1 level indirection
1 level indirection
1 level indirection
1 level indirection

1 level indirection
. . .

2 level indirection

2 level indirection
2 level indirection
2 level indirection
2 level indirection

2 level indirection

Superblock in UNIX V7

• Holds information about the file system
• Replicated in known places on disk
• So if one gets damaged, another can substitute for it

May 16, 2022 ECS 150, Operating Systems 23

May 16, 2022 ECS 150, Operating Systems 24

struct filsys {
unsigned short s_isize; /* size in blocks of i-list */
daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]; /* free block list */
short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINOD]; /* free i-node list */
char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block update */
/* remainder not maintained by this version of the system */
daddr_t s_tfree; /* total free blocks*/
ino_t s_tinode; /* total free inodes */
short s_m; /* interleave factor */
short s_n; /* " " */
char s_fname[6]; /* file system name */
char s_fpack[6]; /* file system pack name */

};

