
Devices, Input, and Output
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Process Interface

• Concept of file underlies interface
• More about this next

• Enables processes to interact with devices
• Also kernel structures such as /dev/null and /proc

• Need at least 1 special system call to handle device-specific functions
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System Calls: open, close

• open makes file accessible to process
• Form: descriptor = open(file, how, . . . )
• Now process uses descriptor to refer the file
• If device not ready, process may block or call may return error code
• Call also checks privileges to ensure user can open the file

• close disassociates file from process
• Form: close(descriptor)
• Device driver does any needed clean-up
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System Calls: seek

• seek positions pointer associated with descriptor as instructed
• Form: seek(descriptor, where)
• Read/write pointer repositioned to where
• Examples: go to arbitrary location in file, position on tape

• Linux: lseek(descriptor, offset, whence)
• whence indicates if offset is from beginning or end of descriptor, or current 

position of read/write pointer
• Returns new position on success, –1 on error; but –1 may be valid value 
• Disambiguate using errno
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System Calls: seek

• Linux: lseek example
external int errno;

. . . 

errno = 0;

if (lseek(desc, offset, SEEK_SET) == -1 && errno != 0){

/* handle error */

}

else{

/* handle success */

}
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System Calls: read

• Transfers data from descriptor object to memory
• Form: nread = read(descriptor, memory address, amount)
• Reads nread bytes, which is at most amount
• Returns 0 on end of file, error code on error

• Form: nread = readv(descriptor, memory list, list length)
• Like read, but reads data into multiple memory locations
• Locations given in memory list; also number of bytes for each
• Returns number of bytes read, or 0 on end of file, error code on error

May 16, 2022 ECS 150, Operating Systems 6



System Calls: write

• Transfers data from memory to descriptor object
• Form: nbyte = write(descriptor, memory address, amount)
• Outputs nbyte bytes, which is at most amount
• Returns error code on error

• Form: nbyte = writev(descriptor, memory list, list length)
• Like write, but writes data from multiple memory locations
• Locations given in memory list; also number of bytes for each
• Returns number of bytes written, error code on error
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Blocking vs. Non-Blocking Read and Write

• Blocking transfer is synchronous
• So when the next statement is executed, transfer has been completed

• Non-blocking transfer is asynchronous
• So next statement executed whether or not transfer has been completed

• Two ways to determine when non-blocking transfer completes:
• Use polling by checking an indicator
• Use interrupts
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Non-Blocking Read and Write

• Process requests interrupt from kernel when transfer completes
• System call may arrange this; on Linux, it’s SIGIO

• Process must arrange to catch interrupt and process it
• Usually a system call like handler(signal, function)

• If process does need to block until transfer is complete, need a system 
call like wait(descriptor, timeout)
• Blocks until transfer to or from descriptor completes
• If not completed by timeout, then wake up and continue

• Never modify memory involved in transfer until transfer completes
• Results are undefined

May 16, 2022 ECS 150, Operating Systems 9



System Calls: control

• Used for device-specific actions
• Form:  control(descriptor, action, . . .)
• action is device specific and may require other parameters

• Linux example: make FAT file system read-only:
attrmask = ATTR_RO;
ioctl(desc, FAT_IOCTL_SET_ATTRIBUTES, &attrmask)

• Linux example: insert ch into (terminal) input queue:
toinsert = ch;
ioctl(desc, TIOCSTI, &toinsert)
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Linux Examples

• Make FAT file system read-only:
attrmask = ATTR_RO;
ioctl(desc, FAT_IOCTL_SET_ATTRIBUTES, &attrmask)

• Insert ch into (terminal) input queue:
toinsert = ch;
ioctl(desc, TIOCSTI, &toinsert)

• Give up role of controlling terminal:
ioctl(desc, TIOCNOTTY)
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File Systems
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File Systems

• File: a collection of data
• virtual: how the user (process) sees the file
• physical: how the file is represented to the hardware and operating system.

• Filename: often reflects something about the file, particularly the 
extension
• TOPS-20: file names are name.ext, where ext is a three-character extension 

describing the file; “bas” for BASIC, “for” for FORTRAN, “bli” for BLISS, “obj” 
for object, “exe” for executable, “txt” for text, and so forth
• Linux, FreeBSD, and MINIX: the last letter(s) may designate something; “.c” for 

C source files, “.cc” for C++  source files, “.py” for Python files
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Directories

• Files organized into directories to make organizing them easier
• “folders” for Mac, Windows

• Directory contains pairs of (name, location)
• Location may be a physical location (disk address) or an index into an array 

containing those locations or any other datum used to locate files
• Example: in Linux, location is the inode number 
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Organization of Directories

• Flat (one-level) directories
• Hierarchical directories
• Graph-structured directories
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Flat (One-Level) Directory

• All files are in the same, single directory
• Problems:
• No two files can have the same name

• To keep users having to worry about collisions, the system could make the user name a 
component of each file name)

• To find a file, one must search the whole directory
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Hierarchical Directory

• Impose tree structure on directories
• Typically there is a root directory, then other directories for users, system 

executables, and other things

• Identifying files: use path name
• Current working directory: where in the file system the process is currently
• Absolute path: from root directory

• Examples: /usr/bin/tcsh, /home/tanz
• Relative path: from some directory other than the root

• Examples: a/b/c; ../xyzzy; ./a.out
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Graph-Structured Directory

• Basically a hierarchical system, but with the ability to alias files across 
branches
• Linux, UNIX have this (contrary to popular belief)

• Direct alias: one (file) location appears twice (or more) in directories, 
often with different names
• In Linux terminology, a hard link

• Indirect alias: special type of file containing path name of another file
• Said to be an indirect alias for the file it names 
• Operating system interpolates the name of the file being aliased on a 

reference to the indirect alias
• In Linux terminology, a symbolic link or soft link
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Aliasing Issues

• No such thing as a “true” name now
• You can refer to same file with multiple names
• For hard links, no way to tell which was the original name

• Deletion:  if a file is deleted under one alias, is it inaccessible using 
the other aliases?
• Yes: must find all other aliases and delete them; very time-consuming
• No: use a link count to track how many aliases a file has and don’t delete file 

until all aliases deleted
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Aliasing Issues

• Accounting: on systems that charge by storage space used, the owner 
of a file pays for storage (and other related charges)
• So if another user creates a direct alias to the file, the owner might no longer 

be able to delete all references to it!

• Solution: have each person owning a link to the file (ie., owning a 
directory containing a link to the file) pay a percentage of the cost of 
the file
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Information About File: UNIX V7 inode
struct inode {

char i_flag;
char i_count; /* reference count */
dev_t i_dev; /* device where inode resides */
ino_t i_number; /* i number, 1-to-1 with device address */
unsigned short i_mode;
short i_nlink; /* directory entries */
short i_uid; /* owner */
short i_gid; /* group of owner */
off_t i_size; /* size of file */
union {

struct {
daddr_t i_addr[13]; /* if normal file/directory */
daddr_t i_lastr; /* last logical block read (for read-ahead) */

};
struct {

daddr_t i_rdev; /* i_addr[0] */
struct group i_group; /* multiplexor group file */

};
} i_un;

};
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Layout of Addresses in inode
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Superblock in UNIX V7

• Holds information about the file system
• Replicated in known places on disk
• So if one gets damaged, another can substitute for it
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struct filsys {
unsigned short s_isize; /* size in blocks of i-list */
daddr_t s_fsize; /* size in blocks of entire volume */
short s_nfree; /* number of addresses in s_free */
daddr_t s_free[NICFREE]; /* free block list */
short s_ninode; /* number of i-nodes in s_inode */
ino_t s_inode[NICINOD]; /* free i-node list */
char s_flock; /* lock during free list manipulation */
char s_ilock; /* lock during i-list manipulation */
char s_fmod; /* super block modified flag */
char s_ronly; /* mounted read-only flag */
time_t s_time; /* last super block update */
/* remainder not maintained by this version of the system */
daddr_t s_tfree; /* total free blocks*/
ino_t s_tinode; /* total free inodes */
short s_m; /* interleave factor */
short s_n; /* " " */
char s_fname[6]; /* file system name */
char s_fpack[6]; /* file system pack name */

};


