File Systems

Access Control

* Typical protection modes
* read, write, append, execute, delete
* privilege (allows modification of others' rights)
e owner (indicates owner of file
e search (grants permission to search directory).

* Interpretations may depend on type of file/directory/etc.
* File: execute bit set means file can be executed
* Directory: execute bit set means directory can be searched

Access Control Lists

* Columns of access control matrix

filel file2 file3
Andy rx r rwo
Betty rwxo r
Charlie rX rwo W

ACLs:

e filel: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
* file2: { (Andy, r) (Betty, r) (Charlie, rwo) }

e file3: { (Andy, rwo) (Charlie, w) }

Abbreviations

* UNIX shortens list by combining rights
» 3 classes of users: owner, group, rest
* T'WX rwX rwx

rest
group
owner
* Ownership assigned based on creating process

* Most UNIX-like systems: if directory has setgid permission, file group
owned by group of directory (Solaris, Linux)

Example: Cisco Router

* Dynamic access control lists

access-list 100 permit tcp any host 10.1.1.1 eq telnet

access-1list 100 dynamic test timeout 180 permit ip any host 10.1.2.3 time-
range my-time

time-range my-time
periodic weekdays 9:00 to 17:00
line vty 0 2
login local
autocommand access-enable host timeout 10

e Limits external access to 10.1.2.3 to 9AM-5PM

e Adds temporary entry for connecting host once user supplies name, password to
router

e Connections good for 180 minutes
* Drops access control entry after that

Conflicts

* Deny access if any entry would deny access
* AIX: if any entry denies access, regardless or rights given so far, access is
denied
* Apply first entry matching subject

 Cisco routers: run packet through access control rules (ACL entries) in order;
on a match, stop, and forward the packet; if no matches, deny
* Note default is deny so honors principle of fail-safe defaults

Capability Lists

* Columns of access control matrix

filel file2 file3
— 1 Andy rx r . rwo
—_| Betty rWXO r
<~ | Charlie rx rwo W

C-Lists:

* Andy: { (filel, rx) (file2, r) (file3, rwo) }

» Betty: { (filel, rwxo) (file2, r) }
e Charlie: { (file1, rx) (file2, rwo) (file3, w) }

May 18, 2022

ECS 150, Operating Systems

Slide 7

Semantics

e Like a bus ticket

* Mere possession indicates rights that subject has over object

* Object identified by capability (as part of the token)
 Name may be a reference, location, or something else

* Architectural construct in capability-based addressing; this just focuses on
protection aspects
* Must prevent process from altering capabilities

* Otherwise subject could change rights encoded in capability or object to
which they refer

Ring-Based Access Control

e Process (segment) accesses
another segment
e read
Privileges o)1 * e)feCUte _
increase ’Q e Gate is an entry point for
calling segment
e Rights:
e rread
e W write
e g append
e e execute

Reading/Writing/Appending

* Procedure executing in ring r
* Data segment with access bracket (a,, a,)

* Mandatory access rule
*r<ay allow access
*a,<r<a, allow r access; not w, a access
°*a,<r deny all access

Executing

* Procedure executing in ring r

* Call procedure in segment with access bracket (a4, a,) and call bracket

(a,, as5)
* Often written (a,, a,, a3)

* Mandatory access rule

*r<a, allow access; ring-crossing fault
*a,<r<a, allow access; no ring-crossing fault
* a,<r<as allow access if through valid gate

* a;<r deny all access

Versions

* Multics
e 8 rings (from 0 to 7)

* Intel’s Itanium chip
* 4 levels of privilege: 0 the highest, 3 the lowest

* Older systems
» 2 levels of privilege: user, supervisor

Linux Capabilities

* In Linux, used to override or add access restrictions by adding,
masking rights
* Not capabilities as no particular object associated with the (added or deleted)
rights
* 3 sets of privileges
* Bounding set (all privileges process may assert)
 Effective set (current privileges process may assert)
e Saved set (rights saved for future purpose)

* Example: UNIX effective, saved UID

Processes and Files

* Processes operate on files using the following commands:
 create: find space for file, allocate it, make an entry in directory
* open: begin operations on file

* close: end operations on file

 read: transfer information from file

 write: transfer information to file

* rewind: move to the beginning (or a random point) in file

e delete: remove file

How Processes Access Files

e Sequential

* Direct, random
* Mapped

* Structured

Sequential Access

e Access one block after the other

* Process keeps track of location using a read/write pointer (part of the
PCB) indicating where the next action is to be done

* Pointer always advances.

Direct Access, Random Access

* Like sequential, except read/write pointer can move freely

Mapped Access

* Map the file into a virtual segment

* Return the segment number rather than the file descriptor

* Then treat the file as part of the process’ virtual store.

* On closing, just release the storage.

* Examples: TOPS-20, Multics, some versions of Linux and UNIX

Structured Access

* File consists of a sequence of records
* Sometimes the operating system knows about the file type.

* Example: ISAM (Indexed Sequential Access Method)

* Small master index points to blocks in secondary index, which in turn point to
real file blocks.

* Takes at most 2 reads to locate any record

Disk Directory

* Like a directory for a disk

* Describes what blocks are in use and which are free.
* Must keep track of what blocks are not in use; such a list is a free list

* Several representations of free list:
* Bit map, with 1 bit per block
 Linked list of blocks

* Like linked list, but in each block of size n on free list, store n-1 numbers of
free blocks; the n-th is the address of the next block making up the list

 Pairs of (block number, number of free blocks from that block on); if there is
more than one contiguous block free, this usually saves same space

* Last 3 are sometimes called file maps

Allocating Disk Blocks to Files

* Contiguous allocation
e Linked allocation
* Indexed allocation

Contiguous Allocation of Blocks

 Blocks are allocated sequentially (contiguously)

* Advantages:
* Minimal head motion for sequential reading of file

* Disadvantages:

* Need to find space for it
* Use usual algorithms (first fit, best fit, etc.)
e Can use compaction but this usually requires copying almost everything on disk

* How much space should be allocated? File may grow beyond its initial

allocation (and even if you allocate the maximum space, that’s wasteful)

* May be room to increase allocation
* Process may terminate, causing users to ask for more space than needed (wasteful)
* May move file elsewhere (very slow)

Linked Allocation

* Directory contains pointers to first, last blocks of file
* Last n bytes of each block point to next block

* Advantages
* No need to know size of file in advance
* Good for files accessed sequentially

e Disadvantages

* Poor for random access as operating system must follow links to get to
desired block

* Wastes n bytes per disk block

* Unreliable; if 1 pointer gets scrambled or deleted, file is garbled or lost
* Doubly linked list might help but uses more memory

Indexed Allocation

* Put all pointers into one block

* Advantages:
* Compact; easy to reference blocks

* Disadvantages:
* Waste space as an entire block is pointers rather than just 1 word per block
* So a 2 block file and a 511 block file use a single block to store pointers

* Implementation issue: if more than 1 block needed for pointers, link
them together or use indirection

* If 1024 pointers/block, then 2 levels of indirection allows 10242 = 1048576
blocks

Example: UNIX/Linux

block number

block number

block number

block number

block number

block number

1 level indirection

block number

block number

1 level indirection

2 level indirection

block number

block number

1 level indirection

2 level indirection

block number

block number

1 level indirection

2 level indirection

block number

1 level indirection

2 level indirection

block number

block number

2 level indirection

block number

block number

block number

1 level indirection

2 level indirection

3 level indirection

1 level indirection

2 level indirection

Example: UNIX/Linux

e Room for:
* 12 (main block)
e 1024 (first indirect block)
e 10242 =1048576 (second indirect block)
* 10243 =1073741824 (triply indirect block)

 So total space this can cover:
e 12 +1024 + 10242 + 10243 =1,074,791,436 blocks

Networked File Server

* System must know where file is kept and be able to communicate
with file server

* Centralized file server: system determines location using a table
showing where it is
* Network File System (NFS) works this way

 Distributed file data: system accesses file containing information
about location, and uses that to get contents of file

* BitTorrent works this way

Example: NFS Protocol

* NFS: Network File System
* Developed by Sun Microsystems in late 1980s; RFC 1094 (March 1989)
e Current version is NFS v4.2, RFC 7862 (Nov. 2016)

» Kernel sees it as just another file until you reach the mount point
» At that point, kernel acts as client to (remote) NFS server

Mounting Remote File System

» Kernel. server exchange messages to make file system available to
client (kernel)

* Access modes controlled by various configuration files

* Common mounting options:

 soft: file system calls that fail after a certain number of retries return failure
rather than continuing to try

* rdonly: mount file system read-only
* nodev: ignore any device files on NFS file system
* nosuid: ignore any setuid bits

Opening a File

* Given file name, handle it as usual until you reach the mount point of
the NFS file system

» System then uses file handles identifying remote files to find right file
* File handles are all that is needed for access
* Fine handles include generation number to detect conflicts
* Every file access uses this handle

Security

Security Basic Components

* Confidentiality
* Keeping data and resources hidden

* Integrity

e Data integrity (integrity)

e Origin integrity (authentication)
* Availability

* Allowing access to data and resources

Policies and Mechanisms

* Policy says what is, and is not, allowed
* This defines “security” for the site/system/etc.

* Mechanisms enforce policies

 Composition of policies
* |f policies conflict, discrepancies may create security vulnerabilities

Goals of Security

* Prevention
* Prevent attackers from violating security policy

* Detection
* Detect attackers violating security policy

* Recovery
» Stop attack, assess and repair damage
* Continue to function correctly even if attack succeeds

Assumptions and Trust

* Underlie all aspects of security

* Policies
* Unambiguously partition system states
* Correctly capture security requirements
* Mechanisms

* Assumed to enforce policy
e Support mechanisms work correctly

Requirements

* Trusted Computer Security Evaluation Criteria (TCSEC)
* And its derivatives, the “Rainbow Series”

* FIPS 140

* For cryptographic implementations

* Common Criteria
* For systems that match protection profiles

e System Security Engineering Capability Maturity Model (SSE-CMM)

* For processes used to develop systems

e GDPR and CCPA

* Laws in the EU and California that govern privacy

Design Principles

* Least privilege
* Process should be given only those privileges necessary to complete its task
* Fail-safe defaults

e Default is to deny permission
* |f action fails, system stays as secure as when action began

* Economy of mechanism
» Keep things as simple as possible (KISS principle)

* Complete mediation
* Check permissions on every access

Design Principles

* Open design

» Security should not depend on secrecy of design or implementation
* Separation of privilege

* Require multiple conditions to hold in order to grant privilege

* Least common mechanism
* Minimize sharing of resources

e Least astonishment

* Security mechanisms should be designed so users understand why the
mechanism works the way it does, and using mechanism is simple

 Earlier version: principle of psychological acceptability, which says security
mechanisms should not add to difficulty of accessing resource

