Security

Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines "security" for the site/system/etc.
- Mechanisms enforce policies
- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities

Goals of Security

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers violating security policy
- Recovery
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds

Assumptions and Trust

- Underlie *all* aspects of security
- Policies
 - Unambiguously partition system states
 - Correctly capture security requirements
- Mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly

Requirements

- Trusted Computer Security Evaluation Criteria (TCSEC)
 - And its derivatives, the "Rainbow Series"
- FIPS 140
 - For cryptographic implementations
- Common Criteria
 - For systems that match protection profiles
- System Security Engineering Capability Maturity Model (SSE-CMM)
 - For processes used to develop systems
- GDPR and CCPA
 - Laws in the EU and California that govern privacy

Design Principles

- Least privilege
 - Process should be given only those privileges necessary to complete its task
- Fail-safe defaults
 - Default is to deny permission
 - If action fails, system stays as secure as when action began
- Economy of mechanism
 - Keep things as simple as possible (KISS principle)
- Complete mediation
 - Check permissions on every access

Design Principles

- Open design
 - Security should not depend on secrecy of design or implementation
- Separation of privilege
 - Require multiple conditions to hold in order to grant privilege
- Least common mechanism
 - Minimize sharing of resources
- Least astonishment
 - Security mechanisms should be designed so users understand why the mechanism works the way it does, and using mechanism is simple
 - Earlier version: principle of psychological acceptability, which says security mechanisms should not add to difficulty of accessing resource

User or Subject Authentication

- Authentication: binding of identity to subject
 - Identity is that of external entity (my identity, Matt, etc.)
 - Subject is computer entity (process, etc.)

Establishing Identity

- One or more of the following
 - What entity knows (eg. password)
 - What entity has (eg. badge, smart card)
 - What entity is (eg. fingerprints, retinal characteristics)
 - Where entity is (*eg*. In front of a particular terminal)

Passwords

- Sequence of characters
 - Examples: 10 digits, a string of letters, etc.
 - Generated randomly, by user, by computer with user input
- Sequence of words
 - Examples: pass-phrases
- Algorithms
 - Examples: challenge-response, one-time passwords

Storage

- Store as cleartext
 - If password file compromised, all passwords revealed
- Encipher file
 - Need to have decipherment, encipherment keys in memory
 - Reduces to previous problem
- Store one-way hash of password
 - If file read, attacker must still guess passwords or invert the hash

Approaches: Password Selection

- Random selection
 - Any password from A equally likely to be selected
- Pronounceable passwords
- User selection of passwords

Random Passwords

- Choose characters randomly from a set of possible characters; may also choose length randomly from a set of possible lengths
- Expected time to guess password maximized when selection of characters in the set, lengths in the set, are equiprobable
- In practice, several factors to be considered:
 - If password too short, likely to be guessed
 - Some other classes of passwords need to be eliminated, such as repeated patterns ("aaaaa"), known patterns ("qwerty")
 - But if too much is excluded, space of possible passwords becomes small enough to search exhaustively