

October 1, 1999 E C S 1 5 3 — F

A L L

 1 9 9 9 1

Version of September 27, 1999 11:23 pm

All About Homework

The homework will consist of both programming exercises and written questions. This handout describes some gen-
eral thoughts and techniques for doing homework, as well as what is required, how to submit it, how late homeworks
are handled, and other administrative matters.

Turning In Homework

All homework is due at the

beginning

 of the class on the due date, unless noted otherwise on the assignment. (This
way, you have no incentive to skip the class while finishing your homework at the last minute!) These will be graded
and returned to you as quickly as possible; we’ll try for three class periods, but can’t guarantee it .

For written homework, you must turn in either an ASCII or a PostScript version of your answers (you can use any text
processor you like to generate these). If you submit PostScript, please be sure the file will print on our department
printers (use

ghostscript

 or

gs

 to check this; if it displays the file properly, the file should print correctly). If your file
is a postscript file, choose a name that ends in “.ps”. If it is an ASCII file, please choose a name that ends in “.txt”.

For programs, turn in the source code and any related information (such as man pages and README files).

For programs, you are free to use any programming language that is available on the CSIF and that the ECS 153 grad-
ers can get to. C or assembly is acceptable. Any of the languages in the programming languages class is acceptable
(assuming compilers and interpreters are available in the CSIF), and if you can write your programs in such a way
that

troff

(1) or

latex

(1) can execute them, that’s fine too. (Yes, someone once wrote a BASIC interpreter as a set of

troff

 macros. It was very slow, but it worked.) But use lots of comments!

Turn in both your written exercises and programs electronically. Suppose you want to turn in the files

answers.ps

 and

prog.c

 for homework 3. To do this, go to the directory containing both and type

handin cs153r hw3 answers.ps prog.c

This program will submit your files to the ECS 153 grader. (A manual page for the

handin

 program is attached.) You
have to do this from the CSIF;

handin

 does not work from other systems.

Doing Written Exercises

When you are asked to analyze something, or explain something, please be complete, and

show your work

 (including
any commands you give, and their output, to show how you did the problem). Otherwise, even if you get the right
answer, you will get

ZERO

 (that’s

0

,

zip

,

nada

,

nothing

) points. Think your answer through and do a rough draft.
Students (and professionals, actually) often overlook this, but it is

vital

. Write clearly and cogently. If the question
asks for an opinion, state your opinion clearly, justify it, and don’t ramble. Answers which start, “My opinion is yes
…” and conclude with “ … on the other hand it could equally well be no” won’t get much credit.

Doing Programming Exercises

We must emphasize the importance of taking time to design your program, thoroughly. More programming problems
arise from improper design than anything else, and the few hours you spend on design will be amply repaid by shorter
coding and debugging phases. So think the design and interfaces through, and — as always — try to find the simplest
way to do the assignment (within the limits given in the assignment, of course)!

Do not leave assignments for the last minute. The assignments are non-trivial and will require significant design time
before you start programming and debugging. When we decide on the due dates, we assume you will spend signifi-
cant amounts of time on design as well as coding and debugging. If you choose not to do this, you will have difficulty
finishing the assignments on time.

We do not mind being asked for help; indeed, we welcome it because it helps us know what the students are finding
difficult or confusing, and sometimes a few words about the problem in class will clarify the assignment immensely.
We

do

 mind being asked for help before you have tried to think the problem through. The classic objectionable ques-
tion (this really happened) occurred on a homework assignment in which the class was given a buggy program. The
assignment said the program did not work, and the homework was to debug it and make it work. That particular class
period discussed how to deal with bugs, and gave tipss and techniques on how to debug programs. Within 10 minutes

October 1, 1999 E C S 1 5 3 — F

A L L

 1 9 9 9 2

Version of September 27, 1999 11:23 pm

of the end of the class during which the assignment was given out, the instructor got this request for help: “The pro-
gram doesn’t run. What do I do now?"

So, before asking for help, please be sure that you have:

• spent a significant amount of time on the design of your solution;
• used a debugger if the problem is a programming bug;
• read all relevant handouts, and news articles (because your question may be answered there); and
• tried everything you could think of to solve the problem.

When you come to us, or send us a note, asking for help, please show us whatever you have done to solve the prob-
lem, because the first question we will ask you is “What have you tried?” This isn’t because we think you’re wasting
our time. It’s because understanding how you have tried to solve the problem will help us figure out exactly what your
difficulty is and what we can do to help you. Remember, we will do everything we can to avoid solving the problem
for you. When we give you help, our goal is to help

you

 solve the problem yourself.

What We Look For In Programming Exercises

When we grade your homework, we look for simplicity, clarity, elegance, and documentation. Here’s a rough weight-
ing of the various factors that go into the grade of each program:

Correctness 60%

Commenting, ease of reading 20%

Clean, readable output 10%

Documentation (README, man page,

etc

.) 10%

If a program does not compile (or assemble), the maximum you can get is 30% of the value of the program. So check
your programs before you submit them!

Late Homework

You can turn in your homework up to one class period late (unless the assignment says otherwise). If you turn it in
late, we will grade it normally, and then deduct 20% as a late penalty. Requests for exceptions will be handled on a
case-by-case basis; please do feel free to ask!

Grade Appeals

If you feel that there is an error in grading, please come see me or the TA and we’ll look over it (and possibly talk
with you about it). However, don’t dally; any such request must be made within one week of when the grades were
made available. After that, we won't change your grade.

HANDIN(1) UNIX Programmer’s Manual HANDIN(1)

UC Davis local January 8, 1998 3

NAME

handin – file submission program

SYNOPSIS

/usr/pkg/bin/handin

touser

[

subdirectory

[

files

...]]

DESCRIPTION

handin provides a secure means of submitting files to another user, recounting what has already been submitted,
and listing what subdirectories exist for containing submissions.

USAGE

Submitting files

With

touser

,

subdirectory

and

files

all specified, each file is copied to ~

touser

/handin/

subdirectory

/

fromuser

,
named with the original file’s

basename

(1), and made owned by

touser

. The directory

fromuser

is made if it
doesn’t already exist and is named after the invoking user. Each file specified should have a

basename

(1) unique
among any files already submitted by that user to

subdirectory

, unless overwriting is desired.

Recounting submissions

Without

files

 specified, information on previous submissions by the user to the specified

subdirectory

 is shown.

Listing existing

subdirectories

Run with only

touser

 specified,

handin

just lists the existing subdirectories (regardless of accessability).

EXAMPLES

The following examples illustrate the use as a homework submission facility to the pseudo-user ``cs101’’ created
for this purpose:

example1%

handin cs101

Existing subdirectories (comments in parentheses):
Asn1 (Due Mar 18)
Asn2 (Due Mar 25)
example2%

handin cs101 Asn1 part1 part2

Submitting part1... ok
Submitting part2... ok
example3%

handin cs101 Asn1

The following input files have been received:
Thu Mar 17 14:50:49 1994 1599 bytes part1
Thu Mar 17 14:50:49 1994 3412 bytes part2

SEE ALSO

rcvhandin

(8)

DIAGNOSTICS

handin

 itself provides only a little of the diagnostic information that’s given and returns the number of errors en-
countered as its exit status. Any other information comes from

rcvhandin

(8).

Skipping

file

: file non-existant or irregular
The named file didn’t exist or was probably a directory. The user should check to make sure that the file they spec-
ified was indeed the file they intended to submit.

Skipping

file

: file not readable
The named file was not readable by the user.

Submitting

file

... failed [:

reason

]
The named file was not successfully submitted. If at all possible a reason is provided by

rcvhandin

(8).

Submitting

file

... ok
The named file was successfully submitted.

NOTES

handin

 is really just a front-end to the

rcvhandin

(8) program. The primary function of

handin

 is to open the
named

files

 with the effective user ID of the invoking user and pass on their contents to the

rcvhandin

(8) program
having the effective user ID of

touser

. This design provides a simple and portable means for implementing a file
submission facility in even a non-homogeneous, network-file-system environment.

AUTHOR

Lou Langholtz, Department of Computer Science, University of Utah, 1994

