

October 13, 1999 E C S 1 5 3 — F A L L 1 9 9 9 Page 1

Version of October 14, 1999 9:19 pm

Notes for October 13, 1999

1. Greetings and Felicitations!

2. Puzzle of the Day

3. Common Implementation Vulnerabilities

a. Unknown interaction with other system components (DNS entry with bad names, assuming finger port is fin-
ger and not chargen)

b. Overflow (year 2000,

lpr

 overwriting flaw,

sendmail

 large integer flaw,

su

 buffer overflow)

c. Race conditions (

xterm

 flaw,

ps

 flaw)

d. Environment variables (

vi

 one-upsmanship,

loadmodule

)

e. Not resetting privileges (Purdue Games incident)

4. Vulnerability Models

a. PA model

b. RISOS

c. NSA

5. PA Model (Neumann's organization)

a. Improper protection (initialization and enforcement)

i. improper choice of initial protection domain - "incorrect initial assignment of security or integrity level
at system initialization or generation; a security critical function manipulating critical data directly
accessible to the user";

ii. improper isolation of implementation detail - allowing users to bypass operating system controls and
write to absolute input/output addresses; direct manipulation of a "hidden" data structure such as a
directory file being written to as if it were a regular file; drawing inferences from paging activity

iii. improper change - the "time-of-check to time-of-use" flaw; changing a parameter unexpectedly;

iv. improper naming - allowing two different objects to have the same name, resulting in confusion over
which is referenced;

v. improper deallocation or deletion - leaving old data in memory deallocated by one process and reallo-
cated to another process, enabling the second process to access the information used by the first; failing
to end a session properly

b. Improper validation - not checking critical conditions and parameters, leading to a process' addressing mem-
ory not in its memory space by referencing through an out-of-bounds pointer value; allowing type clashes;
overflows

c. Improper synchronization;

i. improper indivisibility - interrupting atomic operations (

e

.

g

. locking); cache inconsistency

ii. improper sequencing - allowing actions in an incorrect order (

e

.

g

. reading during writing)

d. Improper choice of operand or operation - using unfair scheduling algorithms that block certain processes or
users from running; using the wrong function or wrong arguments.

6. RISOS

a. Incomplete parameter validation - failing to check that a parameter used as an array index is in the range of
the array;

b. Inconsistent parameter validation - if a routine allowing shared access to files accepts blanks in a file name,
but no other file manipulation routine (such as a routine to revoke shared access) will accept them;

c. Implicit sharing of privileged/confidential data - sending information by modulating the load average of the
system;

d. Asynchronous validation/Inadequate serialization - checking a file for access permission and opening it non-
atomically, thereby allowing another process to change the binding of the name to the data between the

October 13, 1999 E C S 1 5 3 — F A L L 1 9 9 9 Page 2

Version of October 14, 1999 9:19 pm

check and the open;

e. Inadequate identification/authentication/authorization - running a system program identified only by name,
and having a different program with the same name executed;

f. Violable prohibition/limit - being able to manipulate data outside one's protection domain; and

g. Exploitable logic error - preventing a program from opening a critical file, causing the program to execute an
error routine that gives the user unauthorized rights.

7. Penetration Studies

a. Why? Why not analysis?

b. Effectiveness

c. Interpretation

8. Flaw Hypothesis Methodology

a. System analysis

b. Hypothesis generation

c. Hypothesis testing

d. Generalization

9. System Analysis

a. Learn everything you can about the system

b. Learn everything you can about operational procedures

c. Compare to models like PA, RISOS

10. Hypothesis Generation

a. Study the system, look for inconsistencies in interfaces

b. Compare to previous systems

c. Compare to models like PA, RISOS

11. Hypothesis testing

a. Look at system code, see if it would work (live experiment may be unneeded)

b. If live experiment needed, observe usual protocols

12. Generalization

a. See if other programs, interfaces, or subjects/objects suffer from the same problem

b. See if this suggests a more generic type of flaw

13. Peeling the Onion

a. You know very little (not even phone numbers or IP addresses)

b. You know the phone number/IP address of system, but nothing else

c. You have an unprivileged (guest) account on the system.

d. You have an account with limited privileges.

