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Notes for November 17, 1999

 

1. Greetings and Felicitations!

2. Puzzle of the Day

3. Privilege in OSes

a. None (original IBM OS; protect with password, or anyone can read it)

b. Fence, base and bounds registers; relocation

c. Tagged architectures

d. Memory management based schemes: segmentation, paging, and paged segmentation

4. Different forms of access control

a. UNIX method

b. ACLs:  describe, revocation issue

c. MULTICS rings

5. MULTICS ring mechanism

a. MULTICS rings:  used for both data and procedures; rights are REWA
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, but cannot write to it (W or A)
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6. Capabilities

a. Capability-based addressing: show picture of accessing object

b. Show  process limiting access by not inheriting all parent’s capabilities

c. Revocation: use of a global descriptor table

7. Lock and Key

a. Associate with each object a lock;  associate with each process that has access to object a key (it’s a cross 
between ACLs and C-Lists)

b. Example: use crypto (Gifford). 
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