

November 17, 1999 E C S 1 5 3 — F A L L 1 9 9 9 Page 1

Version of November 25, 1999 10:57 pm

Notes for November 17, 1999

1. Greetings and Felicitations!

2. Puzzle of the Day

3. Privilege in OSes

a. None (original IBM OS; protect with password, or anyone can read it)

b. Fence, base and bounds registers; relocation

c. Tagged architectures

d. Memory management based schemes: segmentation, paging, and paged segmentation

4. Different forms of access control

a. UNIX method

b. ACLs: describe, revocation issue

c. MULTICS rings

5. MULTICS ring mechanism

a. MULTICS rings: used for both data and procedures; rights are REWA

b. (

b

1

,

b

2

) access bracket - can access freely; (

b

3

,

b

4

) call bracket - can call segment through gate; so if

a

’s
access bracket is (32,35) and its call bracket is (36,39), then

assuming permission mode (REWA) allows
access

, a procedure in:
rings 0-31: can access

a

, but ring-crossing fault occurs
rings 32-35: can access

a

, no ring-crossing fault
rings 36-39: can access

a

, provided a valid gate is used as an entry point
rings 40-63: cannot access

a

c. If the procedure is accessing a data segment

d

, no call bracket allowed; given the above,

assuming permis-
sion mode (REWA) allows access

, a procedure in:
rings 0-32: can access

d

rings 33-35: can access

d

, but cannot write to it (W or A)
rings 36-63: cannot access

d

6. Capabilities

a. Capability-based addressing: show picture of accessing object

b. Show process limiting access by not inheriting all parent’s capabilities

c. Revocation: use of a global descriptor table

7. Lock and Key

a. Associate with each object a lock; associate with each process that has access to object a key (it’s a cross
between ACLs and C-Lists)

b. Example: use crypto (Gifford).

X

 object enciphered with key

K

. Associate an opener

R

 with

X

. Then:
OR-Access:

K

 can be recovered with any

D

i

 in a list of

n

 deciphering transformations, so

 R

 = (

E

1

(

K

),

E

2

(

K

), ...,

E

n

(

K

)) and any process with access to any of the

D

i

’s can access the file
AND-Access: need all

n

 deciphering functions to get

K

:

R

 =

E

1

(

E

2

(...

E

n

(

K

)...))

