
The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #1	

The ILOVEYOU worm struck on May 4, 2000. It came as an attachment to
email. The letter asked readers to click on an attachment to read a love letter.
The attachment contained a Visual Basic program that Microsoft Outlook
interpreted as commands, and executed. 	

The worm spread throughout the world very quickly, affecting the British
Parliament, the U. S. Congress, the U. S. Air Force, and innumerable
businesses and organizations. Filters to block the mail were quickly developed
and installed, but a spate of copycat worms in the next few days (for example,
one entitled “JOKE” and another with an invoice that would be billed to the
recipient’s credit card) evaded the filters.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #2	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #3	

The worm was composed of four parts: the main routine, the regruns
component, the html component, the spreadtoemail component, and the
listadriv component. 	

After looking at these, we’ll put it all together to describe how the worm did
what it did. This will also give us the requirements for a sstem to execute the
worm, as well as the effects of executing it and the countermeasures you could
take against it.	

We’ll conclude with some comments about the worm on non-Windows
systems.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #4	

This talk looks at the worm, but as an object lesson in malicious logic (code
which does not comply with a site’s security policy). This leads to several
questions:	

The worm invoked wsh, a Visual Basic interpreter for Windows, and updated
the Registry explicitly. Other systems, such as the Macintosh, handle state
information differently (basically, there is no Registry; the Preferences folder
in the System Folder serves a similar purpose). Would the worm work against
other systems?	

How hard would it be to modify the worm to work against UNIX-based
systems? Could something similar work (there is a widespread belief that
UNIX-based systems are immune to worms and viruses because of their multi-
user protections)?	

How can we (or can we) protect ourselves against things like the worm?	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #5	

The worm uses the Wscript interpreter to run the Visual Basic. That’s why you
have to click on the attachment; it needs to be handed off to the interpreter.	

The main routine does some limited setup (including modifying the Registry).	

The values for rootfolder, systemfolder, and tempfolder are obtained from the
system (using GetSpecialFolder), so changing these from the standard
locations does not help.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #6	

The main routine copies the worm into three places for later use. The first two
will be invoked when the system reboots (see regruns) and the third in
spreadtoemail.	

Note the names. The first one looks like a new kernel program (MSKernel =
MicroSoft kernel) and the third a DLL (unless you notice the DLL is not an
extension, or is visible). The second also looks like a text file (.TXT) because
Windows would hide the extension. If you viewed it in another way, the second
extension would be visible (and a give-away that something is seriously
wrong).	

The other routines are invoked in the order shown. The next slides summarize
what they do.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #7	

The Registry keys are set so when the system reboots, the worm is restarted.
The keys are:	

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\Run\MSKernel32	

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\RunServices\Win32DLL	

and they are set to the first and third names, respectively.	

The next step requires the \systemfolder\WinFAT32.exe file, and is skipped if
that does not exist. The registry key is:	

HKCU\Software\Microsoft\Internet\Internet Explorer\Main\Start Page	

and is set to any of the following four values:	

• http://www.skyinet.net/~young1s/
HJKhjnwerhjkxcvytwertnMTFwetrdsfmhPnjw6-587345gvsdf7679njbvYT/
WIN-BUGSFIX.exe	

• http://www.skyinet.net/~angelcat/
skladjflfdjghKJnwetryDGFikjUIyqwerWe54678-6324hjk4jnHHGbvbmKLJKj
hkqj4w/WIN-BUGSFIX.exe	

• http://www.skyinet.net/~koichi/
jf6TRjkcbGRpGqaq198vbFV5hfFEkbopBdQZnm-POhfgER67b3Vbvg/WIN-	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #8	

The web page is systemfolder\LOVE-LETTER-FOR-YOU.HTM, and the next
routine forwards it through IRC. It places the worm code into two (long)
strings. First, it changes the following sequences of characters:	

?-? to / #-# to ‘ @-@ to “ ^-^ to \	

It then splits the two strings into many shorter lines, maps	

‘ to [-[“ to]-] \ to %-%	

adds quotes and CRLF to each line, and writes them into the web page file.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #9	

The Registry key for the list is:	

HKEY_CURRENT_USER\Software\Microsoft\WAB\listname	

and for each address in the list is:	

HKEY_CURRENT_USER\Software\Microsoft\WAB\addressee	

This routine is the primary vector for spreading the worm. It also tries not to
send the letter to the same place twice; however, as most people were in
multiple user’s lists, they got many copies anyway.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #10	

This recursively descends both local and remote drives.	

The exact mappings for modification:	

vbs, vbe are the Visual Basic extensions	

js, jse, css, wsh, sct, hta are the extensions to the interpreter files	

jpg, jpeg are the JPEG extensions	

mp2, mp3 are the MPEG extensions	

Unlike the other three types, the MPEG extensions have 2 added to the file
type. As an MPEG file should be a normal file, this turns it into a hidden file.
But if the attribute is something else, it won’t be hidden (who knows what it
will be?)	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #11	

The files that indicate mIRC is being run are mirc32.exe, mlink32.exe,
mirc.ini, script.ini, or mirc.help. The script uses the dcc command to send the
file.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #12	

main initializes everything for later use.	

regruns arranges for a program to be downloaded at a later time. After the
program is downloaded, on the next run of the worm (for example, after the
next reboot), the downloaded program is added to the set of programs that runs
when the system boots. The downloaded program relies on WinFAT32.exe; if
that is not present, this step is skipped.	

Elias Levy (of SecurityFocus) analyzed the binary and concluded that it
emailed any cached passwords to MAILME@SUPER.NET.PH.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #13	

html builds the web page as an alternate way of spreading, through IRC.	

spreadtoemail sends at most one copy per address, but if the same user has
multiple addresses, she will get one per address. Also, the worm uses the
Registry to track where it has sent the messages, so a new incarnation of the
worm will not resend messages to addresses to which they were previously
sent (unless the Registry keys are deleted).	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #14	

listadriv sets up the files so that the user sees the original file name, including
extension—if you’re not careful and don’t notice that the extension is visible,
you’ll launch the worm when you double-click! (Most people aren’t that
careful.) Most files are deleted; I’m not sure why the MPEGs aren’t, but they
are hidden so you don’t see them.	

The IRC part is particular to mIRC. Other versions of IRC that do not use any
of the initialization or help files, libraries, or programs won’t be affected; but
look out; other IRCs also use the script.ini file!	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #15	

The test for the size of the address list is written so that the current size is
compared to the size of the list stored in the Registry. If the Registry key does
not exist, the comparison is to 1. This means that when an address list is
created, and consists of one user, the comparison (1 > 1) is false and the worm
does not propagate. This seems to be accidental (I can’t think of why one
would do this—all suggestions welcome!), and so I’ll call it a bug. Note if the
address is in another address book with more than one address, the worm goes
to it.	

The folder routine invokes a non-existent method and returns result by
assigning to fileexists—which is the wrong name; it should be folderexists.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #16	

The worm is annoying but non-destructive on a Macintosh. If you turn off VB
or don’t use Ourlook, the worm has no effect. If you do, it will create the three
copies, but these are never run because they don’t go into the Startup folder.
Even if the WIN-BUGSFIX file could somehow be downloaded, it wouldn’t
run. Also, Macintosh IRCs typically do not use a script.ini file nor any of the
others the worm looks for, so the IRC method of spreading bombs. (mIRC
doesn’t run on Macintoshes.)	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #17	

That’s how I first saw the worm, as a text file. 	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #18	

A good example of a UNIX virus (which could easily be mutated into a worm)
is Tom Duff’s paper “Experiences with Viruses on UNIX Systems” in
Computing Surveys 2(2) pp. 155–171; it presents a sh virus that would run on
any UNIX-based system. It’s an expansion of a paper he did in the Winter
1989 USENIX Conference called “Viral Attacks on UNIX System
Security” (pp. 165–171).	

The power of a macro language controls what it can do. If it can access (delete)
system resources (such as files) or execute other programs, it can probably be
used for malicious purposes.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #19	

The files are rootfolder\MSKernel32.vbs, systemfolder\Win32DLL.vbs,
tempfolder\WIN-BUGSFIX.EXE, script.ini in any mIRC folder, rootfolder
\LOVE-LETTER-FOR-YOU.TXT.vbs and systemfolder\LOVE-LETTER-FOR-
YOU.HTM.	

The Registry keys to delete are:	

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\Run\MSKernel32	

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\RunServices\Win32DLL	

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion
\Run\WIN-BUGSFIX	

and all of the address keys.	

You can reset IE’s home page by firing it up and immediately clicking on
STOP, then go to Tools>Internet Options and change the home page back to
what it should be.	

For the .vbs files, look for ones that used to be .vbe, etc. Do not execute these;
you will reinfect your system!	

	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #20	

This worm is a form of malicious logic, defined as “any program or segment of
code that acts in violation of the security policy.” It’s a Trojan horse since it
has an overt purpose (to read a love letter) and a covert purpose (see the earlier
part of the talk). It’s called “discretionary” because it runs with your
privileges, and can only do what you can do.	

This is the crux of the problem: the ILOVEYOU worm can do only what you
can. You could, by hand, do everything the worm does. So, how can security
mechanisms determine that you are not doing it? That the worm is doing these
things without your knowledge and permission? The inability to answer this
question clearly, simply, and correctly every time is the reason the Trojan horse
problem is a major computer security problem.	

ILOVEYOU is also a worm (spreading from machine to machine). Depending
on your definition of “computer virus,” it may or may not be one (as it doesn’t
insert itself into any other program or letter, but it does create new letters). The
latter is a philosophical, not practical, question though.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #21	

For our purposes, interpreted programs are instructions, even though those
programs are fed to an execution engine (the interpreter) and are not executed
directly.	

Earl Boebert was the first to suggest distinguishing between data and
instructions for the purposes of security. In the system he worked on (Secure
Ada Target, later called the LOCK), one had to have a system security officer
do the conversion. Older Burroughs machines had a similar distinction,
although it wasn’t based upon security.	

Practical problem: in computing today, this sort of conversion happens all the
time, for example with email, documents (Microsoft Office macros, as well as
other vendors) and downloads from the Web. On most general-purpose
systems, this would be considered infeasible. Delegating it to ordinary users
leads to the problem we saw here; users had to click on the attachment.	

Forbidding all executable or interpreted files in attachments or downloads
would help, but is probably too draconian for most places. it would not solve
the problem, either.	

Reference: W. Boebert and C. Ferguson, “A Partial Solution to the
Discretionary Trojan Horse Problem,” Proceedings of the Eighth National
Computer Security Conference pp. 245–253 (Sep. 1985).	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #22	

This is a direct application of the principle of least privilege. The worm can
only access a very small number of system resources, so it cannot tie up system
resources, it cannot delete anything except those resources it has access to, and
it cannot communicate with anyone outside the protection domain.	

This is how Netscape handles Java programs. Microsoft is moving in that
direction with ActiveX.	

The main problem is defining the constraints tightly enough to prevent any
harm while allowing the program to perform any (legitimate) function.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #23	

Example: if a C compiler tried to write a file ending in .o, that’s fine (it’s an
object file). if it tried to write to “.login”, something’s wrong. One of the
problems is constructing these tables. The other problem is binding the name in
the table to the program (if I rename my C compiler to D, will the subsystem
be bright enough to figure out it’s still the C program?). Also, on a
development system, updating the tables becomes very difficult.	

Lai and Gray implemented a version of this on a UNIX system. They found it
worked well. Unfortunately, they made several assumptions to minimize the
performance impact, such as not including login, sh, and mail in the checking.
These vitiated the security benefits, as those programs were the ones attackers
tended to hit.	

References: P. Karger, “Limiting the Damage Potential of Discretionary Trojan
Horses,” Proceedings of the 1987 Symposium on Security and Privacy pp. 32–
37 (Apr. 1987); N. Lai and E. Gray, “Strengthening Discretionary Access
Controls to Inhibit Trojan Horses and Computer Viruses,” Proceedings of the
Summer 1988 USENIX Conference pp. 275–286 (Summer 1988).	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #24	

Vendors released updates to their anti-virus programs that would catch the
ILOVEYOU worm. These looked in the Subject field of letters, and flagged
any with ILOVEYOU. So, attackers changed the title to “Funny joke”.
Someone also changed the worm to say that the $300 gift for Mother’s Day
you ordered had been sent, and would be billed to your credit card account;
check the enclosed invoice. The invoice, an attachment, was (of course) the
ILOVEYOU worm.	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #25	

This is the basis for intrusion detection (specifically, anomaly-based intrusion
detection). The problem is characterizing unusual (or usual) behavior. In this
case, a mail script adding lots of keys to the Registry should have raised
eyebrows.	

	

The ILOVEYOU Worm	

Matt Bishop, UC Davis ©2001	

 Page #26	

Good luck, everyone! ☺	

