Lecture 15 Outline

October 24, 2016

Reading: *text*, §10*, 11.1*–11.2*, 11.4* **Assignments**: Homework 3, due Nov. 4; Lab 3, due Nov. 4

- 1. Greetings and felicitations!
- 2. Puzzle of the Day
- 3. Public-Key Cryptography
 - a. Basic idea: 2 keys, one private, one public
 - b. Cryptosystem must satisfy:
 - i. Given public key, computationally infeasible to get private key;
 - ii. Cipher withstands chosen plaintext attack;
 - iii. Encryption, decryption computationally feasible (note: commutativity not required)
 - c. Benefits: can give confidentiality or authentication or both
- 4. Use of public key cryptosystem
 - a. Normally used as key interchange system to exchange secret keys (cheap)
 - b. Then use secret key system (too expensive to use public key cryptosystem for this)
- 5 RSA
 - a. Provides both authenticity and confidentiality
 - b. Go through algorithm:

```
Idea: C = M^e \mod n, M = C^d \mod n, with ed \mod \phi(n) = 1
Public key is (e, n); private key is d. Choose n = pq; then \phi(n) = (p-1)(q-1).
```

- c. Example: p = 5, q = 7; then n = 35, $\phi(n) = (5 1)(7 1) = 24$. Pick d = 11. Then $ed \mod \phi(n) = 1$, so e = 11
 - To encipher 2, $C = M^e \mod n = 2^{11} \mod 35 = 2048 \mod 35 = 18$, and $M = C^d \mod n = 18^{11} \mod 35 = 2$.
- d. Example: p = 53, q = 61; then n = 3233, $\phi(n) = (53 1)(61 1) = 3120$. Pick d = 791. Then e = 71 To encipher M = RENAISSANCE, use the mapping A = 00, B = 01, ..., A = 25, A = 26. Then: A = 15 SA NC EA = 1704 1300 0818 1800 1302 0426 So: A = 1704 1300 0818 1800 1302 0426
- 6. Cryptographic Checksums
 - a. Function y = h(x): easy to compute y given x; computationally infeasible to compute x given y
 - b. Variant: given x and y, computationally infeasible to find a second x' such that y = h(x')
 - c. Keyed vs. keyless
- 7. Key Exchange
 - a. Needham-Schroeder and Kerberos
 - b. Public key; man-in-the-middle attacks
- 8. Key Generation
 - a. Cryptographically random numbers
 - b. Cryptographically pseudorandom numbers
 - c. Strong mixing function
- 9. Cryptographic Key Infrastructure
 - a. Certificates (X.509, PGP)
 - b. Certificate, key revocation
- 10. Digital Signatures
 - a. Judge can confirm, to the limits of technology, that claimed signer did sign message
 - b. RSA digital signatures: sign, then encipher