ECS 153, Computer Security Spring Quarter 2018

Lab Exercise 2

Due: May 7, 2018 Extended; due date is now May 9 Points: 100

For this laboratory exercise, you are to work in teams of 2—3 people. When you turn in your results, also upload a
README file giving the names and UC Davis email addresses of all members of your group. Only one person needs
to upload the answers; the other members should upload a file named README identifying the other members of
their group, as above, and note who uploaded the answers.

This laboratory exercise has you implement two types of buffer overflows. The first is a simple overflow that
causes a parameterless routine to execute. The second is a return-to-libc (or arc) attack.

You will need a virtual machine available via the web at http://nob.cs.ucdavis.edu/ecs153/lab2. The password is
“ubuntu” (without the quotes, of course). When you start the virtual machine, you will find two programs, bad.c and
realbad.c and two executables, bad and realbad, in your directory. Note the last executable is setuid-to-root.

A word of warning. Ubuntu Linux comes with a defense called “address space layout randomization” (ASLR).
This must be off for you to complete this exercise successfully. It is turned off in the virtual machine you download, but
it gets turned on automatically whenever you restart the machine. So, after you restart, log in and type the following
command to turn it off:

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Buffer Overflow 1

In your home directory is a program bad.c (also see below). This program contains a buffer overflow vulnerability;
see the call to gers(3) at line 13. Your job is to exploit the overflow by providing input to the running process that will
cause the program to invoke the function t rap (which, you may notice, is not called anywhere else). You will know
you’ve succeeded when you run the program, give it your input, and it prints “Gotcha!”

The following questions will help guide you. Please turn in your answers to them, a hex dump of the input you
use to call trap, and a typescript or screen shot of you running the program bad, giving it your input, and showing its
output.

1. What is the address of the function t rap? How did you determine this?

2. What is the address on the stack that your input must overwrite (please give both the address of the memory
location(s), and their contents)? How did you locate this address?

3. What is the address of buf?

4. The sled is the input you give to alter the return address stored on the stack. What is the minimum length your
sled must be?

Buffer Overflow 11

Now you will extend the overflow attack. In your home directory is another program realbad.c (also see below). As
before, this program contains a buffer overflow vulnerability. Your job is to exploit the overflow by providing input
to the running process that will cause the program to invoke the function runcom and cause the system(3) function
to be executed with a command embedded in the input you have given. You must pass in a parameter that is a Linux
command, which the program will then execute. (I recommend the command id(1).)

Please turn in the following:

1. A hex dump of the input you use. Please also show where the parameter to runcom is in your input.
2. A screenshot of the program’s output for that input.

Recovery

If you accidentally delete or change the executables, you can recreate them yourself. First, compile the source using
gcc with the option ——fno-stack-protector; if you omit the flag, the attempt to overflow the stack will be
blocked and so the lab will not work. That’s it for bad. For realbad, once you compile it, do the following:

sudo chown root realbad
sudo chmod 4755 realbad

and enter the password given above when asked.

Version of May 7, 2018 at 12:18 Noon Page 1 of


http://nob.cs.ucdavis.edu/ecs153/lab2

ECS 153, Computer Security Spring Quarter 2018

The Programs
bad.c

i #include <stdio .h>
:» #include <stdlib .h>

+ void trap(void)

s |

6 printf (”Gotcha!\n”);
7 exit (0);

o}

o int getstr (void)

11 {

12 char buf[12];
13 gets (buf);

14 return(1);

15 }

16

7 int main(void)

18 {

19 getstr ();

2 printf (”Overflow.failed\n”);
21 return (1);

22 }

realbad.c

1 #include <stdio .h>
» #include <stdlib .h>

4+ void runcom (char xcmd)

s |

6 system (cmd);
7 exit (0);

¢ )

o int getstr (void)

v {

12 char buf[12];
13 gets (buf);

14 return (1);

15 }

16

7 int main(void)

18 {

19 getstr ();

2 runcom (”echo._Overflow._failed”);
21 return(1);

22 }

Version of May 7, 2018 at 12:18 Noon Page 2 of



