
ECS 153, Computer Security Spring Quarter 2021

Lab Exercise 2
Due: May 5, 2021 Points: 100

This laboratory exercise has you implement a simple overflow that causes a parameterless routine to execute. The
extra credit passes an argument to the routine to be executed.

Setup
You will be doing this on a virtual machine. The hypervisor is VirtualBox, available at

https://www.virtualbox.org/
Also, get the VirtualBox Extension Pack. Install both VirtualBox and the extension pack.

You will also need the virtual machine for this exercise. It is available via the web at
http://nob.cs.ucdavis.edu/ecs153/lab2

Download it. It’s big — about 2.8 GB — so it may take come time.
To run it, start VirtualBox, and go to Import Appliance (it’s under the File menu item). Select the file that you

downloaded, bufov-1.ova. Then follow the directions. Your imported machine will show up in the list of virtual
machines.

Then in the settings, go to System, and change RAM to be 4096 MB.
When you start the machine, you will need to enter the password for the account “Ubuntu”. The password is

“ubuntu” (without the quotes, of course). When you start the virtual machine, you will find two programs, bad.c and
realbad.c and two executables, bad and realbad, in your directory. Note the last executable is setuid-to-root.

A word of warning. Ubuntu Linux comes with a defense called “address space layout randomization” (ASLR).
This must be off for you to complete this exercise successfully. It is turned off in the virtual machine you download, but
it gets turned on automatically whenever you restart the machine. So, after you restart, log in and type the following
command to turn it off:

echo 0 | sudo tee /proc/sys/kernel/randomize va space

Regular Buffer Overflow
In your home directory is a program bad.c (also see below). This program contains a buffer overflow vulnerability;
see the call to gets(3) at line 13. Your job is to exploit the overflow by providing input to the running process that will
cause the program to invoke the function trap (which, you may notice, is not called anywhere else). You will know
you’ve succeeded when you run the program, give it your input, and it prints “Gotcha!” This is called a “return-to-libc”
or “arc” attack.

The following questions will help guide you. Please turn in your answers to them and how you got them (specif-
ically, the gdb(1) input and output and any computations), a hex dump of the input you use to call trap, and a
typescript or screen shot of you running the program bad, giving it your input, and showing its output.

1. What is the address of the function trap? How did you determine this?

2. What is the address on the stack that your input must overwrite (please give both the address of the memory
location(s), and their contents)? How did you locate this address?

3. What is the address of buf?

4. The sled is the input you give to alter the return address stored on the stack. What is the minimum length your
sled must be?

Extra Credit: Buffer Overflow with Program Execution
Now extend the overflow attack. In your home directory is another program realbad.c (also see below). As before, this
program contains a buffer overflow vulnerability. Your job is to exploit the overflow by providing input to the running
process that will cause the program to invoke the function runcom and cause the system(3) function to be executed
with a command embedded in the input you have given. You must pass in a parameter that is a Linux command, which
the program will then execute. (I recommend the command id(1).)

Please turn in the following:

1. A hex dump of the input you use. Please also show where the parameter to runcom is in your input.

Version of April 21, 2021 at 9:31am Page 1 of 3

https://www.virtualbox.org/
http://nob.cs.ucdavis.edu/ecs153/lab2

ECS 153, Computer Security Spring Quarter 2021

2. A screenshot of the program’s output for that input.

3. How you got these answers (specifically, the gdb(1) input and output and any computations)

Recovery
If you accidentally delete or change the executables, you can recreate them yourself. First, compile the source using
gcc with the option --fno-stack-protector; if you omit this flag, the attempt to overflow the stack will be
blocked and so the lab will not work. That’s it for bad. For realbad, once you compile it, do the following:

sudo chown root realbad
sudo chmod 4755 realbad

and enter the password given above when asked.

The Programs
bad.c

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3

4 void t r a p (void)
5 {
6 p r i n t f (” Gotcha !\ n ”) ;
7 e x i t (0) ;
8 }
9

10 i n t g e t s t r (void)
11 {
12 char buf [1 2] ;
13 g e t s (buf) ;
14 re turn (1) ;
15 }
16

17 i n t main (void)
18 {
19 g e t s t r () ;
20 p r i n t f (” Overf low f a i l e d \n ”) ;
21 re turn (1) ;
22 }

realbad.c

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3

4 void runcom (char ∗cmd)
5 {
6 sys tem (cmd) ;
7 e x i t (0) ;
8 }
9

10 i n t g e t s t r (void)
11 {
12 char buf [1 2] ;
13 g e t s (buf) ;
14 re turn (1) ;

Version of April 21, 2021 at 9:31am Page 2 of 3

ECS 153, Computer Security Spring Quarter 2021

15 }
16

17 i n t main (void)
18 {
19 g e t s t r () ;
20 runcom (” echo Overf low f a i l e d ”) ;
21 re turn (1) ;
22 }

Version of April 21, 2021 at 9:31am Page 3 of 3

