Introduction to Computer Security

ECS 153 Spring Quarter 2021

Module 1

Basic Components

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Allowing access to data and resources

McCumber Cube

- **Critical Information Characteristics**
- CIA Triad
- **Information States**
- Stages in handling information
- Security Measures
- Controls for information access and handling

Picture from McCumber, John. "Information Systems Security: A Comprehensive Model", *Proceedings 14th National Computer Security Conference* p. 328–337 (Oct. 1991), on p.334.

Information States

• Storage

- Where data is kept
- Examples: disks, USB memory sticks

• Transmission

- How data moves from one place to another
- Examples: network connections, pipes
- Processing
 - Computations using the information
 - Examples: computing statistics, drawing pictures

Security Measures

- Technology
 - Something implemented and used to ensure critical information characteristics maintained through information states
 - Example: encryption, access controls
- Policy and Practice
 - Something which says what information can be accessed, by whom, and how; a procedure to enhance security
 - Example: students may not access one another's homework files
- Education, Training, and Awareness
 - Make people understand security at level appropriate for them
 - Example: cybersecurity training UC Davis folks must take

Classes of Threats

- Disclosure
 - Snooping
- Deception
 - Modification, spoofing, repudiation of origin, denial of receipt
- Disruption
 - Modification
- Usurpation
 - Modification, spoofing, delay, denial of service

Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines "security" for the site/system/etc.
- Mechanisms enforce policies
- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities

Goals of Security

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers violating security policy
- Recovery
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds

Assumptions and Trust

- Underlie *all* aspects of security
- Policies
 - Unambiguously partition system states
 - Correctly capture security requirements
- Mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly

Examples

- Trustworthiness of aspirin purchased from a supermarket
 - In US, Food and Drug Administration (FDA) testing, certification
 - Manufacturing methods to ensure no contamination
 - Safety seal(s) on the bottles
- Correctness of mathematically verified kernel
 - Theorem prover proves design matches specification
 - Implementation matches design
 - Implementation correctly translated into machine code
 - Hardware runs machine code correctly

Types of Mechanisms

Assurance

- Specification
 - Requirements analysis
 - Statement of desired functionality
- Design
 - How system will meet specification
- Implementation
 - Programs or systems that carry out design

Operational Issues

- Cost-benefit analysis
 - Is it cheaper to prevent or recover?
- Risk analysis
 - Should we protect something?
 - How much should we protect this thing?
- Laws and customs
 - Are desired security measures illegal?
 - Will people do them?

Human Issues

- Organizational problems
 - Power and responsibility
 - Financial benefits
- People problems
 - Outsiders and insiders
 - Social engineering

Tying It All Together

Key Points

- Policy defines security, and mechanisms enforce security
 - Confidentiality
 - Integrity
 - Availability
- Trust and knowing assumptions
- Importance of assurance
- The human factor