Cryptography I

ECS 153 Spring Quarter 2021

Module 13

Cryptosystem

- Quintuple (\mathcal{E} , \mathcal{D} , \mathcal{M} , \mathcal{K} , C)
 - \mathcal{M} set of plaintexts
 - \mathcal{K} set of keys
 - *C* set of ciphertexts
 - \mathcal{E} set of encryption functions $e: \mathcal{M} \times \mathcal{K} \rightarrow C$
 - \mathcal{D} set of decryption functions $d: C \times \mathcal{K} \rightarrow \mathcal{M}$

Example

- Example: Cæsar cipher
 - $\mathcal{M} = \{ \text{ sequences of letters } \}$
 - $\mathcal{K} = \{ i \mid i \text{ is an integer and } 0 \le i \le 25 \}$
 - $\mathcal{E} = \{ E_k \mid k \in \mathcal{K} \text{ and for all letters } m, E_k(m) = (m + k) \mod 26 \}$
 - $\mathcal{D} = \{ D_k \mid k \in \mathcal{K} \text{ and for all letters } c, D_k(c) = (26 + c k) \mod 26 \}$
 - $C = \mathcal{M}$

Attacks

- Opponent whose goal is to break cryptosystem is the *adversary*
 - Assume adversary knows algorithm used, but not key
- Three types of attacks:
 - *ciphertext only*: adversary has only ciphertext; goal is to find plaintext, possibly key
 - known plaintext: adversary has ciphertext, corresponding plaintext; goal is to find key
 - *chosen plaintext*: adversary may supply plaintexts and obtain corresponding ciphertext; goal is to find key

Basis for Attacks

- Mathematical attacks
 - Based on analysis of underlying mathematics
- Statistical attacks
 - Make assumptions about the distribution of letters, pairs of letters (digrams), triplets of letters (trigrams), etc.
 - Called models of the language
 - Examine ciphertext, correlate properties with the assumptions.

Symmetric Cryptography

- Sender, receiver share common key
 - Keys may be the same, or trivial to derive from one another
 - Sometimes called *secret key cryptography*
- Two basic types
 - Transposition ciphers
 - Substitution ciphers
 - Combinations are called *product ciphers*

Transposition Cipher

- Rearrange letters in plaintext to produce ciphertext
- Example (Rail-Fence Cipher)
 - Plaintext is HELLO WORLD
 - Rearrange as

HLOOL

ELWRD

• Ciphertext is HLOOL ELWRD

Attacking the Cipher

- Anagramming
 - If 1-gram frequencies match English frequencies, but other *n*-gram frequencies do not, probably transposition
 - Rearrange letters to form *n*-grams with highest frequencies

Example

- Ciphertext: HLOOLELWRD
- Frequencies of 2-grams beginning with H
 - HE 0.0305
 - HO 0.0043
 - HL, HW, HR, HD < 0.0010
- Frequencies of 2-grams ending in H
 - WH 0.0026
 - EH, LH, OH, RH, DH ≤ 0.0002
- Implies E follows H

Example

• Arrange so the H and E are adjacent

HE LL OW OR LD

• Read across, then down, to get original plaintext

Substitution Ciphers

- Change characters in plaintext to produce ciphertext
- Example (Caesar cipher)
 - Plaintext is HELLO WORLD
 - Change each letter to the third letter following it (X goes to A, Y to B, Z to C)
 - Key is 3, usually written as letter 'D'
 - Ciphertext is KHOOR ZRUOG

Attacking the Cipher

- Exhaustive search
 - If the key space is small enough, try all possible keys until you find the right one
 - Caesar cipher has 26 possible keys
- Statistical analysis
 - Compare to 1-gram model of English

Statistical Attack

• Compute frequency of each letter in ciphertext:

G 0.1 H 0.1 K 0.1 O 0.3 R 0.2 U 0.1 Z 0.1

- Apply 1-gram model of English
 - Frequency of characters (1-grams) in English is on next slide

Character Frequencies

а	0.07984	h	0.06384	n	0.06876	t	0.09058
b	0.01511	i	0.07000	0	0.07691	u	0.02844
С	0.02504	j	0.00131	р	0.01741	v	0.01056
d	0.04260	k	0.00741	q	0.00107	w	0.02304
е	0.12452	1	0.03961	r	0.05912	x	0.00159
f	0.02262	m	0.02629	S	0.06333	У	0.02028
g	0.02013					z	0.00057

Statistical Analysis

- *f*(*c*) frequency of character *c* in ciphertext
- φ(i) correlation of frequency of letters in ciphertext with corresponding letters in English, assuming key is i
 - $\varphi(i) = \sum_{0 \le c \le 25} f(c)p(c-i)$ so here, $\varphi(i) = 0.1 p(6-i) + 0.1 p(7-i) + 0.1 p(10-i) + 0.3 p(14-i) + 0.2 p(17-i) + 0.1 p(20-i) + 0.1 p(25-i)$
 - p(x) is frequency of character x in English

Correlation: $\varphi(i)$ for $0 \le i \le 25$

i	φ (i)	i	φ(<i>i</i>)	i	φ (i)	i	φ(<i>i</i>)
0	0.0469	7	0.0461	13	0.0505	19	0.0312
1	0.0393	8	0.0194	14	0.0561	20	0.0287
2	0.0396	9	0.0286	15	0.0215	21	0.0526
3	0.0586	10	0.0631	16	0.0306	22	0.0398
4	0.0259	11	0.0280	17	0.0386	23	0.0338
5	0.0165	12	0.0318	18	0.0317	24	0.0320
6	0.0676					25	0.0443

The Result

- Most probable keys, based on ϕ :
 - $i = 6, \varphi(i) = 0.0676$
 - plaintext EBIIL TLOLA
 - $i = 10, \varphi(i) = 0.0631$
 - plaintext AXEEH PHKEW
 - i = 14, $\varphi(i) = 0.0561$
 - plaintext WTAAD LDGAS
 - $i = 3, \varphi(i) = 0.0586$
 - plaintext HELLO WORLD
- Only English phrase is for *i* = 3
 - That's the key (3 or 'D')

Caesar's Problem

- Key is too short
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well
 - They look too much like regular English letters
- So make it longer
 - Multiple letters in key
 - Idea is to smooth the statistical frequencies to make cryptanalysis harder

Vigènere Cipher

- Like Caesar cipher, but use a phrase
 - So it's effectively multiple Caesar ciphers
- Example
 - Message A LIMERICK PACKS LAUGHS ANATOMICAL
 - Key BENCH
 - Encipher using Caesar cipher for each letter:

keyBENCHBENCHBENCHBENCHBENCHBENCHplainALIMERICKPACKSLAUGHSANATOMICALcipherBPVOLSMPMWBGXUSBYTJZBRNVVNMPCS

Relevant Parts of Tableau

	B	С	E	H	N
A	B	С СЕG I J К M N O P Q R T U V W		H	
С	D	E	G	J	Р
E	F	G	I	L	R
G	H	I	K	N	Т
Η	I	J	${ m L}$	0	U
Ι	J	Κ	Μ	P	V
Κ	L	Μ	0	R	Х
L	M	Ν	Р	S≁I	Y
Μ	N	0	Q	Т	\mathbf{Z}
N	0	Р	R	U	A
0	P	Q	S	V	В
Ρ	Q	R	\mathbf{T}	W	C
R	S₊J	Т	V	Y	E
S	$\mathbf T$	U	W	\mathbf{Z}	F
T	BDFHIJLMNOPQSTUV	V	EGIKLMOPQRSTVWXY	JLNOPRSTUVWYZAB	NPRTUVXYZABCEFGH
ACEGHIKLMNOPRSTU	V	W	Y	В	Η

- Tableau shown has relevant rows, columns only
 - Columns correspond to letters from the key
 - Rows correspond to letters from the message
- Example encipherments:
 - key B, letter R: follow B column down to R row (giving "S")
 - Key H, letter L: follow H column down to L row (giving "S")

Useful Terms

- *period*: length of key
 - In earlier example, period is 3
- tableau: table used to encipher and decipher
 - Vigènere cipher has key letters on top, plaintext letters on the left
- *polyalphabetic*: the key has several different letters
 - Caesar cipher is monoalphabetic

Attacking the Cipher

- Approach
 - Establish period; call it n
 - Break message into n parts, each part being enciphered using the same key letter
 - Solve each part; you can leverage one part from another
- We will show each step

The Target Cipher

• We want to break this cipher:

ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW VECNE DLAAV RWKXS VNSVP HCEUT QOIOF MEGJS WTPCH AJMOC HIUIX

Establish Period

• Kaskski: repetitions in the ciphertext occur when characters of the key appear over the same characters in the plaintext

• Example:

keyVIGVIGVIGVIGVIGVplainTHEBOYHASTHEBALLcipherOPKWWECIYOPKWIRG

Note the key and plaintext line up over the repetitions (underlined). As distance between repetitions is 9, the period is a factor of 9 (that is, 1, 3, or 9)

Repetitions in Example

Letters	Start	End	Gap Length	Gap Length Factors
OEQOOG	24	54	30	2, 3, 5
МОС	50	122	72	2, 2, 2, 3, 3

Estimate of Period

- OEQOOG is probably not a coincidence
 - It's too long for that
 - Period may be 1, 2, 3, 5, 6, 10, 15, or 30
- MOC is also probably not a coincidence
 - Period may be 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, or 72
- Period of 2 or 3 is probably too short (but maybe not)
- Begin with period of 6

Check on Period

- Index of coincidence is probability that two randomly chosen letters from ciphertext will be the same
- Tabulated for different periods:
 - 1 0.0660
 - 2 0.0520
 - 3 0.0473
 - 6 0.0427

Compute IC for an Alphabet

• IC =
$$[n (n-1)]^{-1} \sum_{0 \le i \le 25} [F_i (F_i - 1)]$$

- where n is length of ciphertext and F_i the number of times character i occurs in ciphertext
- For the given ciphertext, IC = 0.0433
 - Indicates a key of length 5 or 6
 - A statistical measure, so it can be in error, but it agrees with the previous estimate (which was 6)

Splitting Into Alphabets

alphabet 1: AIKHOIATTOBGEEERNEOSAI alphabet 2: DUKKEFUAWEMGKWDWSUFWJU alphabet 3: QSTIQBMAMQBWQVLKVTMTMI alphabet 4: YBMZOAFCOOFPHEAXPQEPOX alphabet 5: SOIOOGVICOVCSVASHOGCC alphabet 6: MXBOGKVDIGZINNVVCIJHH

ICs (#1, 0.0692; #2, 0.0779; #3, 0.0779; #4, 0.0562; #5, 0.1238; #6, 0.0429) indicate all alphabets have period 1, except #4 (between 1 and 2) and #6 (between 5 and 6); assume statistical variance

Frequency Examination

#	A	В	С	D	Ε	F	G	Η	Ι	J	K	\mathbf{L}	М	Ν	0	Ρ	Q	R	S	Т	U	V	W	Х	Y	Z
1	3	1	0	0	4	0	1	1	3	0	1	0	0	1	3	0	0	1	1	2	0	0	0	0	0	0
2	1	0	0	2	2	2	1	0	0	1	3	0	1	0	0	0	0	0	1	0	4	0	4	0	0	0
3	1	2	0	0	0	0	0	0	2	0	1	1	4	0	0	0	4	0	1	3	0	2	1	0	0	0
4	2	1	1	0	2	2	0	1	0	0	0	0	1	0	4	3	1	0	0	0	0	0	0	2	1	1
5	1	0	5	0	0	0	2	1	2	0	0	0	0	0	5	0	0	0	3	0	0	2	0	0	0	0
6	0	1	1	1	0	0	2	2	3	1	1	0	1	2	1	0	0	0	0	0	0	3	0	1	0	1
	Η	Μ	Μ	Μ	Η	М	М	Η	Η	Μ	Μ	Μ	М	Η	Η	Μ	L	Η	Η	Η	Μ	\mathbf{L}	\mathbf{L}	\mathbf{L}	\mathbf{L}	L
Th	The last row has general letter frequencies (H high, M medium, L low)																									

Begin Decryption

- First matches characteristics of unshifted alphabet
- Third matches if I shifted to A
- Sixth matches if V shifted to A
- Substitute into ciphertext (bold are substitutions)

Look For Clues

- AJE in last line suggests "are", meaning second alphabet maps A into S:
 - ALIYSRICKBOCKSLMIGHSAZOTOMIOOLINTAGPACEFVATISCIITEEOCNOMIOOLBUTFVEGOOPCNESIHSSEENECSELDAAARECXSANANPHHECLQONONEEGOSELPCMAREOCMICAXInterval

Next Alphabet

• MICAX in last line suggests "mical" (a common ending for an adjective), meaning fourth alphabet maps O into A:

ALIMSRICKPOCKSLAIGHSANOTOMICOLINTOGPACETVATISQIITEECCNOMICOLBUTTVEGOODCNESIVSSEENSCSELDOAARECLSANANDHHECLEONONESGOSELDCMARECCMICAL

Got It!

• QI means that U maps into I, as Q is always followed by U: ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM ARECO MICAL

One-Time Pad

- A Vigenère cipher with a random key at least as long as the message
 - Provably unbreakable
 - Why? Look at ciphertext DXQR. Equally likely to correspond to plaintext DOIT (key AJIY) and to plaintext DONT (key AJDY) and any other 4 letters
 - Warning: keys *must* be random, or you can attack the cipher by trying to regenerate the key
 - Approximations, such as using pseudorandom number generators to generate keys, are not random

Overview of the DES

- A block cipher:
 - encrypts blocks of 64 bits using a 64 bit key
 - outputs 64 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of 16 rounds (iterations) each with a 48 bit round key generated from the user-supplied key

Structure of the DES

- Input is first permuted, then split into left half (L) and right half (R), each 32 bits
- Round begins; R and round key run through function *f*, then xor'ed with L
 - *f* expands R to 48 bits, xors with round key, and then each 6 bits of this are run through S-boxes (substitution boxes), each of which gives 4 bits of output
 - Those 32 bits are permuted and this is the output of f
- R and L swapped, ending the round
 - Swapping does not occur in the last round
- After last round, L and R combined, permuted, forming DES output

Controversy

- Considered too weak
 - Diffie, Hellman said in a few years technology would allow DES to be broken in days
 - Design using 1999 technology published
- Design decisions not public
 - S-boxes may have backdoors

Undesirable Properties

- 4 weak keys
 - They are their own inverses
- 12 semi-weak keys
 - Each has another semi-weak key as inverse
- Complementation property
 - $DES_k(m) = c \Longrightarrow DES_k(m') = c'$
- S-boxes exhibit irregular properties
 - Distribution of odd, even numbers non-random
 - Outputs of fourth box depends on input to third box

Differential Cryptanalysis

- A chosen ciphertext attack
 - Requires 2⁴⁷ plaintext, ciphertext pairs
- Revealed several properties
 - Small changes in S-boxes reduced the number of pairs needed
 - Making every bit of the round keys independent did not impede attack
- Linear cryptanalysis improves result
 - Requires 2⁴³ plaintext, ciphertext pairs

DES Modes

- Electronic Code Book Mode (ECB)
 - Encipher each block independently
- Cipher Block Chaining Mode (CBC)
 - Xor each block with previous ciphertext block
 - Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt (2 keys: k, k')
 - $c = DES_k(DES_k^{-1}(DES_k(m)))$
- Triple DES(3 keys: k, k', k'')
 - $c = DES_k(DES_{k'}(DES_{k'}(m)))$

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected Rijndael as Advanced Encryption Standard, successor to DES
 - Designed to withstand attacks that were successful on DES
- DES officially withdrawn in 2005

Advanced Encryption Standard

- Competition announces in 1997 to select successor to DES
 - Successor needed to be available for use without payment (no royalties, etc.)
 - Successor must encipher 128-bit blocks with keys of lengths 128, 192, and 256
- 3 workshops in which proposed successors were presented, analyzed
- Rijndael selected as successor to DES, called the Advanced Encryption Standard (AES
 - Other finalists were Twofish, Serpent, RC6, MARS

Overview of the AES

- A block cipher:
 - encrypts blocks of 128 bits using a 128, 192, or 256 bit key
 - outputs 128 bits of ciphertext
- A product cipher
 - basic unit is the bit
 - performs both substitution and transposition (permutation) on the bits
- Cipher consists of rounds (iterations) each with a round key generated from the user-supplied key
 - If 128 bit key, then 10 rounds
 - If 192 bit key, then 12 rounds
 - If 256 bit key, then 14 rounds

Structure of the AES: Encryption

- Input placed into a state array, which is then combined with zeroth round key
 - Treat state array as a 4x4 matrix, each entry being a byte
- Round begins; new values substituted for each byte of the state array
- Rows then cyclically shifted
- Each column independently altered
 - Not done in last round
- Result xor'ed with round key
- After last round, state array is the encrypted input

Structure of the AES: Decryption

- Round key schedule reversed
- Input placed into a state array, which is then combined with zeroth round key (of reversed schedule)
- Round begins; rows cyclically shifted, then new values substituted for each byte of the state array
 - Inverse rotation, substitution of encryption
- Result xor'ed with round key (of reversed schedule)
- Each column independently altered
 - Inverse of encryption; this is not done in last round
- After last round, state array is the decrypted input

Analysis of AES

- Designed to withstand attacks that the DES is vulnerable to
- All details of design made public, unlike with the DES
 - In particular, those of the substitutions (S-boxes) were described
- After 2 successive rounds, every bit in the state array depends an every bit in the state array 2 rounds ago
- No weak, semi-weak keys

AES Modes

- DES modes also work with AES
- EDE and "Triple-AES" not used
 - Extended block size makes this unnecessary
- New counter mode CTR added