Outline for January 29, 2016

Reading: text, §10 handout (§9 in the book)

Assignments due: Homework 2, due February 5 Project progress report, due February 8

- 1. Classical Cryptography
 - a. Polyalphabetic: Vigenère, $f_i(a) = a + k_i \mod n$
 - b. Cryptanalysis: first do index of coincidence to see if it is monoalphabetic or polyalphabetic, then Kasiski method.
 - c. Problem: eliminate periodicity of key
- 2. Long key generation
 - a. Autokey cipher:
 - M = THETREASUREISBURIED
 - K = HELLOTHETREASUREISB
 - C = ALPEFXHWNIIIKVLVQWE
 - b. Running-key cipher:
 - M = THETREASUREISBURIED
 - K = THESECONDCIPHERISAN
 - C = MOILVGOFXTMXZFLZAEQ

wedge is that (plaintext, key) letter pairs are not random (T/T, H/H, E/E, T/S, R/E, A/O, S/N, etc.)

- c. Perfect secrecy: when the probability of computing the plaintext message is the same whether or not you have the ciphertext
- d. Only cipher with perfect secrecy: one-time pads; *C* = AZPR; is that DOIT or DONT?
- 3. Product ciphers: DES, AES

4. Public-Key Cryptography

- a. Basic idea: 2 keys, one private, one public
- b. Cryptosystem must satisfy:
 - i. Given public key, computationally infeasible to get private key;
 - ii. Cipher withstands chosen plaintext attack;
 - iii. Encryption, decryption computationally feasible (*note*: commutativity not required)
- c. Benefits: can give confidentiality or authentication or both
- 5. Use of public key cryptosystem
 - a. Normally used as key interchange system to exchange secret keys (cheap)
 - b. Then use secret key system (too expensive to use public key cryptosystem for this)
- 6. Diffie-Hellman
 - a. Goal is to share a common key (symmetric key exchange protocol)
 - b. Given *n*, *g*, prime *p*, compute *k* such that $n = g^k \mod p$
 - c. Choose k as private key, make public key $K = g^k \mod p$