Outline for February 3, 2016

Reading: text, §10 handout; 10 in text

Assignments due: Homework 2, due February 5 Project progress report, due February 8

- 1. RSA
 - a. Provides both authenticity and confidentiality
 - b. Go through algorithm: Idea: $C = M^e \mod n$, $M = C^d \mod n$, with $ed \mod \phi(n) = 1$ Public key is (e, n); private key is d. Choose n = pq; then $\phi(n) = (p-1)(q-1)$.
 - c. Example: p = 5, q = 7; then n = 35, $\phi(n) = (5-1)(7-1) = 24$. Pick d = 11. Then $ed \mod \phi(n) = 1$, so e = 11
 - To encipher 2, $C = M^e \mod n = 2^{11} \mod 35 = 2048 \mod 35 = 18$, and $M = C^d \mod n = 18^{11} \mod 35 = 2$.
- 2. Elliptic curve cryptography
 - a. Elliptic curve is $y^2 = x^3 + ax + b \mod p$, a, b, and p parameters; interested in points where x and y are integers (called *integer points*)
 - b. Points P_1 , P_2 ; define

$$m = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{when } P_1 \neq P_2 \\ \\ \frac{3x_1^2 + a}{2y_1} & \text{otherwise.} \end{cases}$$

Then sum $P_3 = (m^2 - x_1 - x_2, m(x_1 - x_3) - y_1)$

- c. Private key: k; public key, Q = kP = P + ... + P, adding P to itself k times
- d. Example: $y^2 = x^3 + 4x + 14 \mod 2503$; take P = (1002, 493)Choose $k_{Alice} = 1379$ as private key, then public key $K_{Alice} = k_{Alice}P \mod p = (1041, 1659)$ Similarly, private key $k_{Bob} = 2001$ gives public key $K_{Bob} = (629, 548)$ Then Alice computes $k_{Alice}K_{Bob} \mod p = 1379(629, 548) \mod 2503 = (2075, 2458)$ And Bob computes $k_{Bob}K_{Alice} \mod p = 2011(1041, 1659) \mod 2503 = (2075, 2458)$
- 3. Cryptographic checksums
 - a. Function y = h(x): easy to compute y given x; computationally infeasible to compute x given y
 - b. Variant: given x and y, computationally infeasible to find a second x' such that y = h(x')
 - c. Keyed vs. keyless
- 4. Key exchange protocols