
Lecture 20
November 13, 2023

ECS 235A, Computer and Information SecurityNovember 13, 2023 Slide 1

History

• Programmers for Apple II wrote some
• Not called viruses; very experimental

• Fred Cohen
• Graduate student who described them
• Teacher (Adleman, of RSA fame) named it “computer virus”
• Tested idea on UNIX systems and UNIVAC 1108 system

November 13, 2023 ECS 235A, Computer and Information Security Slide 2

Cohen’s Experiments

• UNIX systems: goal was to get superuser privileges
• Max time 60m, min time 5m, average 30m
• Virus small, so no degrading of response time
• Virus tagged, so it could be removed quickly

• UNIVAC 1108 system: goal was to spread
• Implemented simple security property of Bell-LaPadula
• As writing not inhibited (no *-property enforcement), viruses spread easily

November 13, 2023 ECS 235A, Computer and Information Security Slide 3

First Reports of Viruses in the Wild

• Brain (Pakistani) virus (1986)
• Written for IBM PCs
• Alters boot sectors of floppies, spreads to other floppies

• MacMag Peace virus (1987)
• Written for Macintosh
• Prints “universal message of peace” on March 2, 1988 and deletes itself

November 13, 2023 ECS 235A, Computer and Information Security Slide 4

More Reports

• Duff’s experiments (1987)
• Small virus placed on UNIX system, spread to 46 systems in 8 days
• Wrote a Bourne shell script virus

• Highland’s Lotus 1-2-3 virus (1989)
• Stored as a set of commands in a spreadsheet and loaded when spreadsheet

opened
• Changed a value in a specific row, column and spread to other files

November 13, 2023 ECS 235A, Computer and Information Security Slide 5

Infection Vectors

• Boot sector infectors
• Executable infectors
• Data infectors
• These are not mutually exclusive; some viruses do two or three of

these

November 13, 2023 ECS 235A, Computer and Information Security Slide 6

Boot Sector Infectors

• A virus that inserts itself into the boot sector of a disk
• Section of disk containing code
• Executed when system first “sees” the disk

• Including at boot time …

• Example: Brain virus
• Moves disk interrupt vector from 13H to 6DH
• Sets new interrupt vector to invoke Brain virus
• When new floppy seen, check for 1234H at location 4

• If not there, copies itself onto disk after saving original boot block; if no free space,
doesn’t infect but if any free space, it infects, possibly overwriting used disk space

• If there, jumps to vector at 6DH

November 13, 2023 ECS 235A, Computer and Information Security Slide 7

Executable Infectors

• A virus that infects executable programs
• Can infect either .EXE or .COM on PCs
• May append itself (as shown) or put itself anywhere, fixing up binary so it is

executed at some point
November 13, 2023 ECS 235A, Computer and Information Security

Header Executable instructions and data

First program instruction to be executed

Header Executable instructions and data

Jump to the beginning of the virus
1000 1000

Return to the beginning of the program

Slide 19-8

Executable Infectors (con’t)

• Jerusalem (Israeli) virus
• Checks if system infected

• If not, set up to respond to requests to execute files
• Checks date

• If not 1987 or Friday 13th, set up to respond to clock interrupts and then run program
• Otherwise, set destructive flag; will delete, not infect, files

• Then: check all calls asking files to be executed
• Do nothing for COMMAND.COM
• Otherwise, infect or delete

• Error: doesn’t set signature when .EXE executes
• So .EXE files continually reinfected

November 13, 2023 ECS 235A, Computer and Information Security Slide 9

Macro Viruses

• A virus composed of a sequence of instructions that are interpreted
rather than executed directly
• Can infect either executables (Duff’s shell virus) or data files

(Highland’s Lotus 1-2-3 spreadsheet virus)
• Independent of machine architecture
• But their effects may be machine dependent

November 13, 2023 ECS 235A, Computer and Information Security Slide 10

Example

• Melissa
• Infected Microsoft Word 97 and Word 98 documents

• Windows and Macintosh systems
• Invoked when program opens infected file
• Installs itself as “open” macro and copies itself into Normal template

• This way, infects any files that are opened in future
• Invokes mail program, sends itself to everyone in user’s address book

• Used a mail program that most Macintosh users didn’t use, so this was rare for
Macintosh users

November 13, 2023 ECS 235A, Computer and Information Security Slide 11

Multipartite Viruses

• A virus that can infect either boot sectors or executables
• Typically, two parts
• One part boot sector infector
• Other part executable infector

November 13, 2023 ECS 235A, Computer and Information Security Slide 12

Concealment

• Terminate and stay resident (TSR)
• Stealth
• Encryption
• Polymorphism
• Metamorphism

November 13, 2023 ECS 235A, Computer and Information Security Slide 13

TSR Viruses

• A virus that stays active in memory after the application (or
bootstrapping, or disk mounting) is completed
• Non-TSR viruses only execute when host application executes

• Examples: Brain, Jerusalem viruses
• Stay in memory after program or disk mount is completed

November 13, 2023 ECS 235A, Computer and Information Security Slide 14

Stealth Viruses

• A virus that conceals infection of files
• Example: IDF (also called Stealth or 4096) virus modifies DOS service

interrupt handler as follows:
• Request for file length: return length of uninfected file
• Request to open file: temporarily disinfect file, and reinfect on closing
• Request to load file for execution: load infected file

November 13, 2023 ECS 235A, Computer and Information Security Slide 15

Encrypted Viruses

• A virus that is enciphered except for a small deciphering routine
• Detecting virus by signature now much harder as most of virus is enciphered

November 13, 2023 ECS 235A, Computer and Information Security

Virus code Deciphering
routine

Enciphered
virus code

Deciphering key

Slide 19-16

Example
(* Decryption code of the 1260 virus *)

(* initialize the registers with the keys *)
rA = k1;
rB = k2;

(* initialize rC with the virus; starts at sov, ends at eov *)
rC = sov;
(* the encipherment loop *)
while (rC != eov) do begin
 (* encipher the byte of the message *)
 (*rC) = (*rC) xor rA xor rB;
 (* advance all the counters *)
 rC = rC + 1;

 rA = rA + 1;
end

November 13, 2023 ECS 235A, Computer and Information Security Slide 17

Polymorphic Viruses

• A virus that changes its form each time it inserts itself into another
program
• Idea is to prevent signature detection by changing the “signature” or

instructions used for deciphering routine
• At instruction level: substitute instructions
• At algorithm level: different algorithms to achieve the same purpose

• Toolkits to make these exist (Mutation Engine, Trident Polymorphic
Engine)
• After decipherment, same virus loaded into memory
• Virus is encrypted; decryption routine is obscured (polymorphicized?)

November 13, 2023 ECS 235A, Computer and Information Security Slide 18

Example

• These are different instructions (with different bit patterns) but have
the same effect:
• add 0 to register
• subtract 0 from register
• xor 0 with register
• no-op

• Polymorphic virus would pick randomly from among these
instructions

November 13, 2023 ECS 235A, Computer and Information Security Slide 19

Metamorphic

• Like polymorphic, but virus itself is also obscured
• So two instances of virus would look different when loaded into memory

• When decrypted, virus may have:
• Two completely different implementations
• Two completely different algorithms producing same result

November 13, 2023 ECS 235A, Computer and Information Security Slide 20

Example

• W95/Zmist virus distributes itself throughout code being infected
• On finding file to infect:
• p = 0.1: insert jump instructions between each set of non-jump instructions
• p = 0.1: infect file with unencrypted copy of Zmist
• p = 0.8: if file has section with initialized data that is writeable, infect file with

polymorphic encrypted version of Zmist; otherwise, infect file with
unencrypted copy of Zmist
• In first case, virus expands that section, inserts virus code as it is decrypted, and executes

that code; decrypting code preserves registers so they can be restored

• On execution, allocates memory to put virus engine in; that creates
new instance of (transformed) virus

November 13, 2023 ECS 235A, Computer and Information Security Slide 21

Computer Worms

• A program that copies itself from one computer to another
• Origins: distributed computations
• Schoch and Hupp: animations, broadcast messages
• Segment: part of program copied onto workstation
• Segment processes data, communicates with worm’s controller
• Any activity on workstation caused segment to shut down

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-22

Example: Internet Worm of 1988

• Targeted Berkeley, Sun UNIX systems
• Used virus-like attack to inject instructions into running program and run

them
• To recover, had to disconnect system from Internet and reboot
• To prevent re-infection, several critical programs had to be patched,

recompiled, and reinstalled

• Analysts had to disassemble it to uncover function
• Disabled several thousand systems in 6 or so hours

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-23

Example: Christmas Worm

• Distributed in 1987, designed for IBM networks
• Electronic letter instructing recipient to save it and run it as a program
• Drew Christmas tree, printed “Merry Christmas!”
• Also checked address book, list of previously received email and sent copies

to each address

• Shut down several IBM networks
• Really, a macro worm
• Written in a command language that was interpreted

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-24

Computer Worm Structure

• Target Selection: worm determines which systems to spread to
• Propagation: worm attempts to infect chosen targets
• Execution: worm carries out action after it becomes resident on a

target
• This phase may be empty

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-25

Example: Internet Worm

• Target selection: chose targets from lists of trusted hosts, and hosts
trusted by users whose passwords had been guessed
• Propagation: tried to exploit 4 vulnerabilities
• sendmail (SMTP server) in debug mode
• fingerd (information server) buffer overflow attack
• used guessed passwords
• tried to exploit trust relationships

• Execution: took actions to:
• Concealed its presence
• Prevent reinfection
• tried to guess passwords on local system (to be used in target selection)

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-26

Stuxnet

• Found in 2010, targeted Siemens centrifuges used in process to enrich
uranium
• Compromised Windows software first, then the PLC in centrifuges

• Very sophisticated evasion, exploits, and use of first PLC rootkit
• Spun them at nonstandard speeds so they tore apart

• Entered system via infected USB stick with a Trojan horse
• Looked on local network for Windows-based systems to infect; if found, infected no

more than 3
• On system, checked to see if it was part of a specific industrial control

system
• No: did nothing
• Ye: acted

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-27

Stuxnet (con’t)

• Tried to download most current version of itself
• Exploited vulnerabilities in infected system’s PLC to take control of

attached centrifuges
• Also corrupted information sent to the controllers so they would not detect

anything was wrong until centrifuges went out of control
• Believed developed by one or more nation-states due to its

complexity, sophistication
• Other equally sophisticated worms found since then
• Flame: spread in ways similar to Stuxnet, but only gathers information from

microphones, keystrokes, network traffic, and so forth for the attackers to
retrieve

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-28

Importance of Stuxnet

• Earlier research showed physical systems vulnerable to attacks from
connected computers
• Stuxnet showed these attacks can be launched over the Internet

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-29

Bots

• bot: malware that carries out some action in co-ordination with other
bots
• botmaster: attacker controlling the bots on one or more systems
• command and control (C&C) server, mothership: system(s) the

attacker uses to control the bots
• C&C channels: communication paths used to communicate with bots
• Distinguishing characteristic of bot is the use of this channel
• Can be triggered, updated over this

• botnet: a collection of bots

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-30

Life Cycle of a Bot in a Botnet

1. Bot infects system
2. Bot checks for a network connection, looks for either C&C server or

another bot it can communicate with
3. Bot gets commands sent by C&C server or other bot
• These may include adding components to add to what the bot can do

4. Bot executes these commands
• May send results to somewhere else

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-31

Organization of a Botnet

• Centralized; each bot communicates directly with C&C server
• Potential problem: C&C server can become a bottleneck

• Hierarchical: C&C server communicates with set of bots, which in turn
act as C&C servers for other bots, in a hierarchy
• Good for controlling large botnets such as Torpig (over 180,000 bots) and

Mirai (estimated to have 493,000 bots)

• Peer-to-peer: no single C&C server; bots act as peers, and botnet is a
peer-to-peer network
• High latency; to join the botnet, a bot scans addresses until it finds another

bot, then forwards message to it

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-32

Example: GTBot (Centralized)

• One of the earliest bots; used IRC channel as C&C channel
• Get it onto a Windows system running mIRC client
• Installed scripts to monitor the channel looking for specific keywords
• Also program to hide the bot, and possibly other programs to propagate the

bot to other systems and install servers on them

• One instance (Backdoor.IRC.Aladinz) installs and hides itself, then
notifies attacker (via IRC channel) it is resident
• This has lots of tools to launch attacks

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-33

Example: Torpig (Hierarchical)

• Based on Mebroot rootkit
• Bot installed itself so it is executed at boot, before the operating

system loaded
• Then contacted Mebroot C&C server to get modules to add to bot
• Compromises sensitive data like passwords
• Data sent to Torpig C&C server

• Server acknowledges upload
• Can also send file with addresses of backup Torpig C&C servers, and how

often the bot should contact the server

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-34

Example: Trojan.Peacomm (Peer-to-Peer)

• Bot gets on Windows system
• Uses peer-to-peer protocol to connect to peers
• Addresses of at least 100 peers stored in bot

• Looks for a value encoding a UTL pointing to another component
• Downloads and executes this component
• Many possible component, including one for spamming, one for reaping

email addresses for spam, one to launch a distributed denial of service attack

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-35

Content Delivery Networks and IP Flux

• Content delivery networks (Netflix, Amazon, etc.) have many servers
• These are invisible to the client
• When DNS gets target system, it returns IP address to client

• As these networks grew, needed way to prevent any single server
from being overloaded
• Mechanism is to change IP address associated with a particular host

name over a very short period of time (called IP flux)
• So, while traffic appears to go to one particular system, it is actually sent to

whichever server has the address currently

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-36

Applying This to Botnets

• Goal: make it harder to locate bots
• Especially C&C servers

• Approach: associate list of IP addresses with host name
• IP flux botnet: change binding between host name (in bot) and IP

address, going down the list (flux)
• Single flux botnet: list of IP addresses is large; host name is registered to one

of these addresses, and after a short time deregistered and reregistered using
a different IP address
• Double flux botnet: do the same with IP addresses of the DNS servers used to

look up the IP addresses
• Also called fast flux botnets

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-37

Example: Flame (Fast Flux Botnet)

• Bot gathers information from infected system, network
• This is then retrieved over C&C channel to Flame server
• Server can also send new modules for bot

• When Flame installed:
• Check for network by trying to connect to well-known servers; assume

successful
• Flame had 5 domains initially for the Flame server; Flame server could add

more to this list
• Communication over SSL; Flame’s certificate was self-signed

• Preliminary analysis: more than 50 host names and more than 15 IP addresses
related to C&C messages; later raised number of C&C hosts to around 100

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-38

Variation: Domain Flux

• Instead of holding host name fixed and changing the associated IP address,
change host name and keep associated IP address fixed
• Called domain flux

• Advantage: host name associated with C&C server for a short period of
time
• With IP flux, finding host name identifies C&C server

• Example: Torpig
• Compute a host name that is fixed for current week number and year; append

“.com”, “.net”, “.biz” suffixes and probe for each
• If no luck, generate name based on current day, append suffixes, probe for each
• If no luck, go to fixed list of host names

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-39

Rabbit, Bacterium

• A program that absorbs all of some class of resources
• Example: for UNIX system, shell commands:

while true
do

mkdir x
chdir x

done

• Exhausts either disk space or file allocation table (inode) space

November 13, 2023 ECS 235A, Computer and Information Security Slide 19-40

Logic Bombs

• A program that performs an action that violates the site security
policy when some external event occurs
• Example: program that deletes company’s payroll records when one

particular record is deleted
• The “particular record” is usually that of the person writing the logic bomb
• Idea is if (when) he or she is fired, and the payroll record deleted, the

company loses all those records

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-41

Adware

• Trojan horse that gathers information for marketing purposes and
displays advertisements
• Often selects ads to display based on gathered information

• Believed to have originated with a company announcing it would
make its software available for free, because it would pop up window
advertising company
• Benign as user had to opt in
• Spread through distribution of program only

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-42

Types of Behavior

• Low severity behavior: just display ads, don’t transmit information
• Medium severity behavior: transmits information deemed low risk,

such as location information, and may display ads based on this
• High severity behavior: transmits personal information, and displays

ads tailored to devices, people with those characteristic
• Typically very aggressive (annoying)
• Sometimes called madware

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-43

Getting Adware On a System

• Put on a web site user visits
• Put it in a banner enticing the user to click on it; this installs the adware
• Page may require user to install software to view parts of web site; software

contains adware
• If page refreshes automatically, it may direct browser to run an executable

• Usually browser notifies user via a dialog box that may require a click; on click, program
runs and installs adware

• Some browser plug-ins download, execute files automatically; there may be
no indication of this
• Called drive-by downloading

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-44

Getting Adware on a System

• Put into software that user downloads
• Very common with mobile apps

• Problem: app asks for permission to carry out its tasks
• Some may be unnecessary; often hard for users to minimize permissions set
• Thus app may have access to camera, microphone, and may be able to make

calls without going through dialing interface — and user does not realize this

• Example: survey of 900 Android apps
• 323 had unnecessary permissions

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-45

Economic Motives

• Used to target ads that use is most likely to respond to
• Purveyors get money for every ad displayed or clicked on
• Web site owners display ads on their sites
• Developers put adware libraries in their apps
• Others take apps, modify them to include adware, and put them on

unauthorized app stores

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-46

Spyware

• Trojan horse that records information about the use of a computer for
a third party
• Usually results in compromise of confidential information like keystrokes,

passwords, credit card numbers, etc.
• Information can be stored for retrieval or sent to third party

• Put on a system the way any other malware gets onto system

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-47

Example: Pegasus

• Designed for Apple’s iPhone, attacker sends URL to victim who clicks
on it, triggering attack that tries to gain control of iPhone
• First sends HTML file exploiting vulnerability in WebKit
• Basis for Safari and other browsers

• This downloads software to gain control of iPhone
• Software enciphered with different keys for each download
• Includes a loader for the next stage

• Loader downloads dynamic load libraries, daemons, other software
and installs Pegasus
• If iPhone has previously been jailbroken, removes all acess to the iPhone

provided by the earlier break

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-48

Example: Response to Pegasus

• Apple developed patches for the vulnerabilities exploited
• Deployed them in update to iPhone’s operating system, iOS

• Discovered when human rights activist received text messages with a
suspicious link
• Sent messages to Citizens Lab
• Citizens Lab recognized links were associated with a manufacturer of spyware

for government surveillance
• Lookout carried out technical analysis

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-49

Ransomware

• Malware inhibiting use of computer, resources until a ransom is paid
• Ransom is usually monetary, and must be paid through some anonymous

mechanism (BitCoin is popular)
• PC CYBORG (1989) altered AUTOEXEC.BAT to count number of times

system was booted; on 90th, names of all files on main drive (C:)
enciphered and directories hidden
• User told to send fee to post office box to recover the system

• CryptoLocker (2013) encrypted files and gave victim 100 hours to pay
ransom; if not, encryption keys destroyed
• Used evasive techniques to make tracking more difficult
• Spread via email as attachments

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-50

Example Protocol

Goal: Angie wants to extort money from Xavier
• Angie generates asymmetric key pair; embeds public key in malware
• She retains private key

• Malware infects Xavier’s system
• Generates symmetric key and uses that to encipher target data
• Enciphers symmetric key with public key, erases all instances of symmetric key
• Xavier sees message saying he needs to do something for Angie (usually send

money); he does so and includes the encrypted symmetric key

• Angie then deciphers encrypted symmetric key with her private key,
returns it to Xavier

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-51

Phishing

• Act of impersonating legitimate entity in order to obtain information
such as passwords or credit card information without authorization
• Usually a web site associated with a business

• Usual approach: craft a web site that looks like the legitimate one
• Send out lots of email trying to persuade people to go to that web site
• Copy their login, password, and other information for later use

• More vicious attack: fake web site passes data on to real web site, and
sends replies back to victim
• Man-in-the-middle attack

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-52

Example

• Heidi banks at MegaBank, with URL of https://www.megabank.com
• She receives a letter saying she needs to check her account for

possible fraudulent activity
• Email includes link
• Link is visible as www.megabank.com
• But link actually connects to https://www.megabank.crookery.com

• Attacker records name, password, then give error
• If very clever, client is redirected to actual bank’s home page

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-53

Spearphishing

• Phishing attack tailored for particular user
• Used to attack specific (types of) users to obtain information
• Example: some employees of a major cybersecurity company received

email called “2011 Recruitment Plan”
• They opened an attacked spreadsheet
• This exploited a vulnerability in a supporting program to install a backdoor so

attackers could control system remotely
• Attackers used this as a springboard to compromise other systems in the

company’s network, and ultimately stole sensitive information
• Embarrassment, financial costs of recovery large

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-54

Defenses

• Scanning
• Distinguishing between data, instructions
• Containing
• Specifying behavior
• Limiting sharing
• Statistical analysis

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-55

Scanning Defenses

• Malware alters memory contents or disk files
• Compute manipulation detection code (MDC) to generate signature

block for data, and save it
• Later, recompute MDC and compare to stored MDC
• If different, data has changed

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-56

Example: tripwire

• File system scanner
• Initialization: it computes signature block for each file, saves it
• Signature consists of file attributes, cryptographic checksums
• System administrator selects what file attributes go into signature

• Checking file system: run tripwire
• Regenerates file signatures
• Compares them to stored file signatures and reports any differences

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-57

Assumptions

• Files do not contain malicious logic when original signature block
generated
• Pozzo & Grey: implement Biba’s model on LOCUS to make assumption

explicit
• Credibility ratings assign trustworthiness numbers from 0 (untrusted) to n

(signed, fully trusted)
• Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk level
• If credibility rating < risk level, must use special command to run program

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-58

Antivirus Programs

• Look for specific “malware signatures”
• If found, warn user and/or disinfect data

• At first, static sequences of bits, or patterns; now also includes
patterns of behavior
• At first, derived manually; now usually done automatically
• Manual derivation impractical due to number of malwares

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-59

Example: Earlybird

• System for generating worm signatures based on worm increasing network
traffic between hosts, and this traffic has many common substrings
• When a packet arrives, its contents hashed and destination port and

protocol identifier appended; then check hash table (called dispersion
table) to see if this content, port, and protocol have been seen
• If yes, increment counters for source, destination addresses; if both exceed a

threshold, content may be worm signature
• If no, run through a multistage filter that applies 4 different hashes and checks for

those hashes in different tables; count of entry with smallest count incremented; if
all 4 counters exceed a second threshold, make entry in dispersion table

• Found several worms before antimalware vendors distributed signatures
for them

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-60

Example: Polygraph

• Assumes worm is polymorphic or metamorphic
• Generates classes of signatures, all based on substrings called tokens
• Conjunction signature: collection of tokens, matched if all tokens appear

regardless of order
• Token-subsequence signature: like conjunction signature but tokens must

appear in order
• Bayes signature associates a score with each token, and threshold

with signature
• If probability of the payload as computed from token scores exceeds a

threshold, match occurs
• Experimentally, Bayes signatures work well when there is little non-

malicious traffic, but if that’s more than 80% of network traffic, no
worms identified

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-61

Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-62

Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign

samples; no false negatives, 3 false positives

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-63

Evasion

Malware can try to ensure malicious activity not triggered in analysis
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual

machine (in 2010, estimates found 2.13% of malware samples did this)

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-64

Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and

assumption that tools, supporting infrastructure used in certifying process are
not corrupt

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-65

Example: Duff and UNIX

• Observation: users with execute permission usually have read
permission, too
• So files with “execute” permission have type “executable”; those without it,

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-66

Containment

• Basis: a user (unknowingly) executes malicious logic, which then
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and

effects of its actions

• Approach draws on mechanisms for confinement

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-67

Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-68

Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-69

Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and

developmental environments
• Sharing is critical here

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-70

Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-71

Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3

• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3

• Ideally, p12 has capability { (s1, p2, x) } so no problem
• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so

can’t change its rights over f3

• Solution: restrict access by others

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-72

Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system

denies access

• Problem: how do you decide what should be in your authorization
denial subset?

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-73

Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file,
request rejected

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-74

Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command

line arguments plus any temporary files that the process creates

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-75

File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no,
deny access

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-76

Example

• Assembler invoked from compiler
as x.s /tmp/ctm2345

 and creates temp file /tmp/as1111
• VAL is

x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4),

thereby revealing Trojan horse

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-77

Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump,

find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail,

make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd

November 13, 2023 ECS 235A, Computer and Information Security Slide 20-78

