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Defenses

• Scanning
• Distinguishing between data, instructions
• Containing
• Specifying behavior
• Limiting sharing
• Statistical analysis
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Scanning Defenses

• Malware alters memory contents or disk files
• Compute manipulation detection code (MDC) to generate signature 

block for data, and save it
• Later, recompute MDC and compare to stored MDC
• If different, data has changed
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Example: tripwire

• File system scanner
• Initialization: it computes signature block for each file, saves it
• Signature consists of file attributes, cryptographic checksums
• System administrator selects what file attributes go into signature

• Checking file system: run tripwire
• Regenerates file signatures
• Compares them to stored file signatures and reports any differences
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Assumptions

• Files do not contain malicious logic when original signature block 
generated
• Pozzo & Grey: implement Biba’s model on LOCUS to make assumption 

explicit
• Credibility ratings assign trustworthiness numbers from 0 (untrusted) to n 

(signed, fully trusted)
• Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk level
• If credibility rating < risk level, must use special command to run program
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Antivirus Programs

• Look for specific “malware signatures”
• If found, warn user and/or disinfect data

• At first, static sequences of bits, or patterns; now also includes 
patterns of behavior
• At first, derived manually; now usually done automatically
• Manual derivation impractical due to number of malwares
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Example: Earlybird

• System for generating worm signatures based on worm increasing network 
traffic between hosts, and this traffic has many common substrings
• When a packet arrives, its contents hashed and destination port and 

protocol identifier appended; then check hash table (called dispersion 
table) to see if this content, port, and protocol have been seen
• If yes, increment counters for source, destination addresses; if both exceed a 

threshold, content may be worm signature
• If no, run through a multistage filter that applies 4 different hashes and checks for 

those hashes in different tables; count of entry with smallest count incremented; if 
all 4 counters exceed a second threshold, make entry in dispersion table

• Found several worms before antimalware vendors distributed signatures 
for them 
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Example: Polygraph

• Assumes worm is polymorphic or metamorphic
• Generates classes of signatures, all based on substrings called tokens
• Conjunction signature: collection of tokens, matched if all tokens appear 

regardless of order
• Token-subsequence signature: like conjunction signature but tokens must 

appear in order
• Bayes signature associates a score with each token, and threshold 

with signature
• If probability of the payload as computed from token scores exceeds a 

threshold, match occurs
• Experimentally, Bayes signatures work well when there is little non-

malicious traffic, but if that’s more than 80% of network traffic, no 
worms identified
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Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that 
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware
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Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded 
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on 
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can 
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign 

samples; no false negatives, 3 false positives
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Evasion

Malware can try to ensure malicious activity not triggered in analysis 
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual 

machine (in 2010, estimates found 2.13% of malware samples did this)
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Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and 
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and 

assumption that tools, supporting infrastructure used in certifying process are 
not corrupt
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Example: Duff and UNIX

• Observation: users with execute permission usually have read 
permission, too
• So files with “execute” permission have type “executable”; those without it, 

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier
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Containment

• Basis: a user (unknowingly) executes malicious logic, which then 
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and 

effects of its actions

• Approach draws on mechanisms for confinement
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Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V
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Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though
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Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and 

developmental environments
• Sharing is critical here
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Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its 

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect
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Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3

• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2 
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3
• Ideally, p12 has capability { (s1, p2, x ) } so no problem

• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so 
can’t change its rights over f3 

• Solution: restrict access by others
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Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system 

denies access

• Problem: how do you decide what should be in your authorization 
denial subset?
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Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested 

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with 

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file, 
request rejected
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Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command 

line arguments plus any temporary files that the process creates
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File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if 
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other 
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no, 
deny access
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Example

• Assembler invoked from compiler
• as x.s /tmp/ctm2345
•  and creates temp file /tmp/as1111
• VAL is
• x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot 

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4), 

thereby revealing Trojan horse 
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Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump, 

find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail, 

make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd

ECS 235A, Computer and Information Security Slide 25November 20, 2023



Specifications

• Treat infection, execution phases of malware as errors
• Example
• Break programs into sequences of non-branching instructions
• Checksum each sequence, encrypt it, store it
• When program is run, processor recomputes checksums, and at each branch 

compares with precomputed value; if they differ, an error has occurred
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N-Version Programming

• Implement several different versions of algorithm
• Run them concurrently
• Check intermediate results periodically
• If disagreement, majority wins

• Assumptions
• Majority of programs not infected
• Underlying operating system secure
• Different algorithms with enough equal intermediate results may be 

infeasible
• Especially for malicious logic, where you would check file accesses
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Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of shared procedure in memory
• Master directory associates unique owner with each procedure, and with 

each user a list of other users the first trusts
• Before executing any procedure, system checks that user executing procedure 

trusts procedure owner
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Multilevel Policies

• Put programs at the lowest security level, all subjects at higher levels
• By *-property, nothing can write to those programs
• By ss-property, anything can read (and execute) those programs

• Example: Trusted Solaris system
• All executables, trusted data stored below user region, so user applications 

cannot alter them
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Proof-Carrying Code

• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code meets this requirement
• Proof integrated with executable code
• Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter: proofs 300–900 bytes, 

validated in 0.3 –1.3 ms
• Startup cost higher, runtime cost considerably shorter

ECS 235A, Computer and Information Security Slide 30November 20, 2023



Detecting Statistical Changes

• Example: application had 3 programmers working on it, but statistical 
analysis shows code from a fourth person—may be from a Trojan 
horse or virus!
• Or libraries …

• Other attributes: more conditionals than in original; look for identical 
sequences of bytes not common to any library routine; increases in 
file size, frequency of writing to executables, etc.
• Denning: use intrusion detection system to detect these
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