
Lecture 22
November 20, 2023

ECS 235A, Computer and Information Security Slide 1November 20, 2023

Defenses

• Scanning
• Distinguishing between data, instructions
• Containing
• Specifying behavior
• Limiting sharing
• Statistical analysis

ECS 235A, Computer and Information Security Slide 2November 20, 2023

Scanning Defenses

• Malware alters memory contents or disk files
• Compute manipulation detection code (MDC) to generate signature

block for data, and save it
• Later, recompute MDC and compare to stored MDC
• If different, data has changed

ECS 235A, Computer and Information Security Slide 3November 20, 2023

Example: tripwire

• File system scanner
• Initialization: it computes signature block for each file, saves it
• Signature consists of file attributes, cryptographic checksums
• System administrator selects what file attributes go into signature

• Checking file system: run tripwire
• Regenerates file signatures
• Compares them to stored file signatures and reports any differences

ECS 235A, Computer and Information Security Slide 4November 20, 2023

Assumptions

• Files do not contain malicious logic when original signature block
generated
• Pozzo & Grey: implement Biba’s model on LOCUS to make assumption

explicit
• Credibility ratings assign trustworthiness numbers from 0 (untrusted) to n

(signed, fully trusted)
• Subjects have risk levels

• Subjects can execute programs with credibility ratings ≥ risk level
• If credibility rating < risk level, must use special command to run program

ECS 235A, Computer and Information Security Slide 5November 20, 2023

Antivirus Programs

• Look for specific “malware signatures”
• If found, warn user and/or disinfect data

• At first, static sequences of bits, or patterns; now also includes
patterns of behavior
• At first, derived manually; now usually done automatically
• Manual derivation impractical due to number of malwares

ECS 235A, Computer and Information Security Slide 6November 20, 2023

Example: Earlybird

• System for generating worm signatures based on worm increasing network
traffic between hosts, and this traffic has many common substrings
• When a packet arrives, its contents hashed and destination port and

protocol identifier appended; then check hash table (called dispersion
table) to see if this content, port, and protocol have been seen
• If yes, increment counters for source, destination addresses; if both exceed a

threshold, content may be worm signature
• If no, run through a multistage filter that applies 4 different hashes and checks for

those hashes in different tables; count of entry with smallest count incremented; if
all 4 counters exceed a second threshold, make entry in dispersion table

• Found several worms before antimalware vendors distributed signatures
for them

ECS 235A, Computer and Information Security Slide 7November 20, 2023

Example: Polygraph

• Assumes worm is polymorphic or metamorphic
• Generates classes of signatures, all based on substrings called tokens
• Conjunction signature: collection of tokens, matched if all tokens appear

regardless of order
• Token-subsequence signature: like conjunction signature but tokens must

appear in order
• Bayes signature associates a score with each token, and threshold

with signature
• If probability of the payload as computed from token scores exceeds a

threshold, match occurs
• Experimentally, Bayes signatures work well when there is little non-

malicious traffic, but if that’s more than 80% of network traffic, no
worms identified

ECS 235A, Computer and Information Security Slide 8November 20, 2023

Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware

ECS 235A, Computer and Information Security Slide 9November 20, 2023

Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign

samples; no false negatives, 3 false positives

ECS 235A, Computer and Information Security Slide 10November 20, 2023

Evasion

Malware can try to ensure malicious activity not triggered in analysis
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual

machine (in 2010, estimates found 2.13% of malware samples did this)

ECS 235A, Computer and Information Security Slide 11November 20, 2023

Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and

assumption that tools, supporting infrastructure used in certifying process are
not corrupt

ECS 235A, Computer and Information Security Slide 12November 20, 2023

Example: Duff and UNIX

• Observation: users with execute permission usually have read
permission, too
• So files with “execute” permission have type “executable”; those without it,

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier

ECS 235A, Computer and Information Security Slide 13November 20, 2023

Containment

• Basis: a user (unknowingly) executes malicious logic, which then
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and

effects of its actions

• Approach draws on mechanisms for confinement

ECS 235A, Computer and Information Security Slide 14November 20, 2023

Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V

ECS 235A, Computer and Information Security Slide 15November 20, 2023

Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though

ECS 235A, Computer and Information Security Slide 16November 20, 2023

Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and

developmental environments
• Sharing is critical here

ECS 235A, Computer and Information Security Slide 17November 20, 2023

Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect

ECS 235A, Computer and Information Security Slide 18November 20, 2023

Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3

• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3
• Ideally, p12 has capability { (s1, p2, x) } so no problem

• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so
can’t change its rights over f3

• Solution: restrict access by others

ECS 235A, Computer and Information Security Slide 19November 20, 2023

Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system

denies access

• Problem: how do you decide what should be in your authorization
denial subset?

ECS 235A, Computer and Information Security Slide 20November 20, 2023

Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file,
request rejected

ECS 235A, Computer and Information Security Slide 21November 20, 2023

Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command

line arguments plus any temporary files that the process creates

ECS 235A, Computer and Information Security Slide 22November 20, 2023

File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no,
deny access

ECS 235A, Computer and Information Security Slide 23November 20, 2023

Example

• Assembler invoked from compiler
• as x.s /tmp/ctm2345
• and creates temp file /tmp/as1111
• VAL is
• x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4),

thereby revealing Trojan horse

ECS 235A, Computer and Information Security Slide 24November 20, 2023

Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump,

find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail,

make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd

ECS 235A, Computer and Information Security Slide 25November 20, 2023

Specifications

• Treat infection, execution phases of malware as errors
• Example
• Break programs into sequences of non-branching instructions
• Checksum each sequence, encrypt it, store it
• When program is run, processor recomputes checksums, and at each branch

compares with precomputed value; if they differ, an error has occurred

ECS 235A, Computer and Information Security Slide 26November 20, 2023

N-Version Programming

• Implement several different versions of algorithm
• Run them concurrently
• Check intermediate results periodically
• If disagreement, majority wins

• Assumptions
• Majority of programs not infected
• Underlying operating system secure
• Different algorithms with enough equal intermediate results may be

infeasible
• Especially for malicious logic, where you would check file accesses

ECS 235A, Computer and Information Security Slide 27November 20, 2023

Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of shared procedure in memory
• Master directory associates unique owner with each procedure, and with

each user a list of other users the first trusts
• Before executing any procedure, system checks that user executing procedure

trusts procedure owner

ECS 235A, Computer and Information Security Slide 28November 20, 2023

Multilevel Policies

• Put programs at the lowest security level, all subjects at higher levels
• By *-property, nothing can write to those programs
• By ss-property, anything can read (and execute) those programs

• Example: Trusted Solaris system
• All executables, trusted data stored below user region, so user applications

cannot alter them

ECS 235A, Computer and Information Security Slide 29November 20, 2023

Proof-Carrying Code

• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code meets this requirement
• Proof integrated with executable code
• Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter: proofs 300–900 bytes,

validated in 0.3 –1.3 ms
• Startup cost higher, runtime cost considerably shorter

ECS 235A, Computer and Information Security Slide 30November 20, 2023

Detecting Statistical Changes

• Example: application had 3 programmers working on it, but statistical
analysis shows code from a fourth person—may be from a Trojan
horse or virus!
• Or libraries …

• Other attributes: more conditionals than in original; look for identical
sequences of bytes not common to any library routine; increases in
file size, frequency of writing to executables, etc.
• Denning: use intrusion detection system to detect these

ECS 235A, Computer and Information Security Slide 31November 20, 2023

