
Lecture 24
November 27, 2023

ECS 235A, Computer and Information Security Slide 1November 27, 2023

Exceptions

proc copy(x: integer class { x };
 var y: integer class Low);
var sum: integer class { x };
 z: int class Low;
begin
 y := z := sum := 0;
 while z = 0 do begin
 sum := sum + x;
 y := y + 1;
 end
end

November 27, 2023 ECS 235A, Computer and Information Security Slide 2

Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of sum is MAXINT/y
• Information flows from y to sum, but sum ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)

November 27, 2023 ECS 235A, Computer and Information Security Slide 3

Infinite Loops

proc copy(x: integer 0..1 class { x };
 var y: integer 0..1 class Low);
begin
 y := 0;
 while x = 0 do
 (* nothing *);
 y := 1;
end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y

November 27, 2023 ECS 235A, Computer and Information Security Slide 4

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;
• x is semaphore, a shared variable
• Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!

November 27, 2023 ECS 235A, Computer and Information Security Slide 5

Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
• fglb(S): glb of assignment targets following S
• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure
• For all i, shared(Si) ≤ fglb(Si)

November 27, 2023 ECS 235A, Computer and Information Security Slide 6

Example

begin

 x := y + z; (* S1 *)

 wait(sem); (* S2 *)

 a := b * c – x; (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x
• lub{ b, c, x } ≤ a
• sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem

November 27, 2023 ECS 235A, Computer and Information Security Slide 7

Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be

executed after wait

• Requirements
• Loop terminates
• All statements S1, …, Sn in loop secure
• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop

November 27, 2023 ECS 235A, Computer and Information Security Slide 8

Loop Example

while i < n do begin

 a[i] := item; (* S1 *)

 wait(sem); (* S2 *)

 i := i + 1; (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met
• S1 secure if lub{ i, item } ≤ a[i]
• S2 secure if sem ≤ i and sem ≤ a[i]
• S3 trivially secure

November 27, 2023 ECS 235A, Computer and Information Security Slide 9

cobegin/coend

cobegin

 x := y + z; (* S1 *)

 a := b * c – y; (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x
• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x Ù lub{ b, c, y } ≤ a

November 27, 2023 ECS 235A, Computer and Information Security Slide 10

Soundness

• Above exposition intuitive
• Can be made rigorous:
• Express flows as types
• Equate certification to correct use of types
• Checking for valid information flows same as checking types conform to

semantics imposed by security policy

November 27, 2023 ECS 235A, Computer and Information Security Slide 11

Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
• Done at run time, not compile time

• Obvious approach: check explicit flows
• Problem: assume for security, x ≤ y

if x = 1 then y := a;
• When x ≠ 1, x = High, y = Low, a = Low, appears okay—but implicit flow

violates condition!

November 27, 2023 ECS 235A, Computer and Information Security Slide 12

Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so you can treat implicit flows

as explicit flows
• Stack-based machine, so everything done in terms of pushing onto

and popping from a program stack

November 27, 2023 ECS 235A, Computer and Information Security Slide 13

Instruction Description

• skip: instruction not executed
• push(x, x): push variable x and its security class x onto program

stack
• pop(x, x) : pop top value and security class from program stack,

assign them to variable x and its security class x respectively

November 27, 2023 ECS 235A, Computer and Information Security Slide 14

Instructions

• x := x + 1 (increment)
• Same as:
 if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and save PC on
stack)
• Same as:
 if x = 0 then begin
 push(PC, PC); PC := lub{PC, x}; PC := n;
 end else if PC ≤ x then
 x := x - 1
 else
 skip;

November 27, 2023 ECS 235A, Computer and Information Security Slide 15

More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch without
saving PC on stack)
• Same as:
 if x = 0 then
 if x ≤ PC then PC := n else skip
 else
 if PC ≤ x then x := x - 1 else skip

November 27, 2023 ECS 235A, Computer and Information Security Slide 16

More Instructions

• return (go to just after last if)
• Same as:
 pop(PC, PC);

• halt (stop)
• Same as:
 if program stack empty then halt
• Note stack empty to prevent user obtaining information from it after halting

November 27, 2023 ECS 235A, Computer and Information Security Slide 17

Example Program

1 if x = 0 then goto 4 else x := x - 1
2 if z = 0 then goto 6 else z := z - 1
3 halt
4 z := z + 1
5 return
6 y := y + 1
7 return

Initially x = 0 or x = 1, y = 0, z = 0
Program copies value of x to y

November 27, 2023 ECS 235A, Computer and Information Security Slide 18

Example Execution: Initial Setting

x y z PC PC stack check
1 0 0 1 Low —

November 27, 2023 ECS 235A, Computer and Information Security Slide 19

Example Execution: Step 1

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
if x = 0 then goto 4 else x := x – 1

November 27, 2023 ECS 235A, Computer and Information Security

if x = 0 then begin
 push(PC, PC); PC := lub{PC, x}; PC := n;
end else if PC ≤ x then
 x := x - 1
else
 skip;

Slide 20

Example Execution: Step 2

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
if z = 0 then goto 6 else z := z - 1

November 27, 2023 ECS 235A, Computer and Information Security

if z = 0 then begin
 push(PC, PC); PC := lub{PC, z}; PC := n;
end else if PC ≤ z then
 z := z - 1
else
 skip;

Slide 21

Example Execution: Step 3
x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
y := y + 1

November 27, 2023 ECS 235A, Computer and Information Security

if PC ≤ y then y := y + 1 else skip

Slide 22

Example Execution: Step 4

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
return

November 27, 2023 ECS 235A, Computer and Information Security

pop(PC, PC);

Slide 23

Example Execution: Step 5

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
0 1 0 3 Low —
halt

November 27, 2023 ECS 235A, Computer and Information Security

if program stack empty then halt

Slide 24

Handling Errors

• Ignore statement that causes error, but continue execution
• If aborted or a visible exception taken, user could deduce information
• Means errors cannot be reported unless user has clearance at least equal to

that of the information causing the error

November 27, 2023 ECS 235A, Computer and Information Security Slide 25

Variable Classes

• Up to now, classes fixed
• Check relationships on assignment, etc.

• Consider variable classes
• Fenton’s Data Mark Machine does this for PC
• On assignment of form y := f(x1, …, xn), y changed to lub{ x1, …, xn }
• Need to consider implicit flows, also

November 27, 2023 ECS 235A, Computer and Information Security Slide 26

Example Program

(* Copy value from x to y. Initially, x is 0 or 1 *)
proc copy(x: integer class { x };
 var y: integer class { y })
var z: integer class variable { Low };
begin
 y := 0;
 z := 0;
 if x = 0 then z := 1;
 if z = 0 then y := 1;
end;
• z changes when z assigned to
• Assume y < x (that is, x strictly dominates y; they are not equal)

November 27, 2023 ECS 235A, Computer and Information Security Slide 27

Analysis of Example

• x = 0
• z := 0 sets z to Low
• if x = 0 then z := 1 sets z to 1 and z to x
• So on exit, y = 0

• x = 1
• z := 0 sets z to Low
• if z = 0 then y := 1 sets y to 1 and checks that lub{Low, z} ≤ y
• So on exit, y = 1

• Information flowed from x to y even though y < x

November 27, 2023 ECS 235A, Computer and Information Security Slide 28

Handling This (1)

• Fenton’s Data Mark Machine detects implicit flows violating
certification rules

November 27, 2023 ECS 235A, Computer and Information Security Slide 29

Handling This (2)

• Raise class of variables assigned to in conditionals even when branch
not taken
• Also, verify information flow requirements even when branch not

taken
• Example:
• In if x = 0 then z := 1, z raised to x whether or not x = 0
• Certification check in next statement, that z ≤ y, fails, as z = x from previous

statement, and y < x

November 27, 2023 ECS 235A, Computer and Information Security Slide 30

Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit
as well as explicit) force certification checks
• Example
• When x = 0, first if sets z to Low, then checks x ≤ z
• When x = 1, first if checks x ≤ z
• This holds if and only if x = Low

• Not possible as y < x = Low by assumption and there is no class that Low strictly
dominates

November 27, 2023 ECS 235A, Computer and Information Security Slide 31

Integrity Mechanisms

• The above also works with Biba, as it is mathematical dual of Bell-
LaPadula
• All constraints are simply duals of confidentiality-based ones

presented above

November 27, 2023 ECS 235A, Computer and Information Security Slide 32

Example 1

For information flow of assignment statement:
y := f(x1, …, xn)

the relation glb{ x1, …, xn } ≥ y must hold
• Why? Because information flows from x1, …, xn to y, and under Biba,

information must flow from a higher (or equal) class to a lower one

November 27, 2023 ECS 235A, Computer and Information Security Slide 33

Example 2

For information flow of conditional statement:
if f(x1, …, xn) then S1; else S2; end;

then the following must hold:
• S1, S2 must satisfy integrity constraints
• glb{ x1, …, xn } ≥ lub{y | y target of assignment in S1, S2 }

November 27, 2023 ECS 235A, Computer and Information Security Slide 34

Example Information Flow Control Systems

• Privacy and Android Cell Phones
• Analyzes data being sent from the phone

• Firewalls

November 27, 2023 ECS 235A, Computer and Information Security Slide 35

Privacy and Android Cell Phones

• Many commercial apps use advertising libraries to monitor clicks,
fetch ads, display them
• So they send information, ostensibly to help tailor advertising to you

• Many apps ask to have full access to phone, data
• This is because of complexity of permission structure of Android system

• Ads displayed with privileges of app
• And if they use Javascript, that executes with those privileges
• So if it has full access privilege, it can send contact lists, other information to

others
• Information flow problem as information is flowing from phone to

external party

November 27, 2023 ECS 235A, Computer and Information Security Slide 36

Analyzing Android Flows

• Android based on Linux
• App executables in bytecode format (Dalvik executables, or DEX) and run in

Dalvik VM
• Apps event driven
• Apps use system libraries to do many of their functions
• Binder subsystem controls interprocess communication

• Analysis uses 2 security levels, untainted and tainted
• No categories, and tainted < untainted

November 27, 2023 ECS 235A, Computer and Information Security Slide 37

TaintDroid: Checking Information Flows

• All objects tagged tainted or untainted
• Interpreters, Binder augmented to handle tags

• Android native libraries trusted
• Those communicating externally are taint sinks

• When untrusted app invokes a taint sink library, taint tag of data is recorded
• Taint tags assigned to external variables, library return values

• These are assigned based on knowledge of what native code does

• Files have single taint tag, updated when file is written
• Database queries retrieve information, so tag determined by database query

responder

November 27, 2023 ECS 235A, Computer and Information Security Slide 38

TaintDroid: Checking Information Flows

• Information from phone sensor may be sensitive; if so, tainted
• TaintDroid determines this from characteristics of information

• Experiment 1 (2010): selected 30 popular apps out of a set of 358
that required permission to access Internet, phone location, camera,
or microphone; also could access cell phone information
• 105 network connections accessed tainted data
• 2 sent phone identification information to a server
• 9 sent device identifiers to third parties, and 2 didn’t tell user
• 15 sent location information to third parties, none told user
• No false positives

November 27, 2023 ECS 235A, Computer and Information Security Slide 39

TaintDroid: Checking Information Flows

• Experiment 2 (2012): revisited 18 out of the 30 apps (others did not
run on current version of Android)
• 3 still sent location information to third parties
• 8 sent device identification information to third parties without consent

• 3 of these did so in 2010 experiment
• 5 were new

• 2 new flows that could reveal tainted data
• No false positives

November 27, 2023 ECS 235A, Computer and Information Security Slide 40

Firewalls

• Host that mediates access to a network
• Allows, disallows accesses based on configuration and type of access

• Example: block Conficker worm
• Conficker connects to botnet, which can use system for many purposes

• Spreads through a vulnerability in a particular network service
• Firewall analyze packets using that service remotely, and look for Conficker

and its variants
• If found, packets discarded, and other actions may be taken

• Conficker also generates list of host names, tried to contact botnets at those
hosts
• As set of domains known, firewall can also block outbound traffic to those hosts

November 27, 2023 ECS 235A, Computer and Information Security Slide 41

Filtering Firewalls

• Access control based on attributes of packets and packet headers
• Such as destination address, port numbers, options, etc.
• Also called a packet filtering firewall
• Does not control access based on content
• Examples: routers, other infrastructure systems

November 27, 2023 ECS 235A, Computer and Information Security Slide 42

Proxy

• Intermediate agent or server acting on behalf of endpoint without
allowing a direct connection between the two endpoints
• So each endpoint talks to proxy, thinking it is talking to other endpoint
• Proxy decides whether to forward messages, and whether to alter them

November 27, 2023 ECS 235A, Computer and Information Security Slide 43

Proxy Firewall

• Access control done with proxies
• Usually bases access control on content as well as source, destination

addresses, etc.
• Also called an applications level or application level firewall
• Example: virus checking in electronic mail

• Incoming mail goes to proxy firewall
• Proxy firewall receives mail, scans it
• If no virus, mail forwarded to destination
• If virus, mail rejected or disinfected before forwarding

November 27, 2023 ECS 235A, Computer and Information Security Slide 44

Example

• Want to scan incoming email for malware
• Firewall acts as recipient, gets packets making up message and

reassembles the message
• It then scans the message for malware
• If none, message forwarded
• If some found, mail is discarded (or some other appropriate action)

• As email reassembled at firewall by a mail agent acting on behalf of
mail agent at destination, it’s a proxy firewall (application layer
firewall)

November 27, 2023 ECS 235A, Computer and Information Security Slide 45

Stateful Firewall

• Keeps track of the state of each connection
• Similar to a proxy firewall
• No proxies involved, but this can examine contents of connections
• Analyzes each packet, keeps track of state
• When state indicates an attack, connection blocked or some other

appropriate action taken

November 27, 2023 ECS 235A, Computer and Information Security Slide 46

Network Organization: DMZ

• DMZ is portion of network separating a purely internal network from
external network
• Usually put systems that need to connect to the Internet here
• Firewall separates DMZ from purely internal network
• Firewall controls what information is allowed to flow through it
• Control is bidirectional; it control flow in both directions

November 27, 2023 ECS 235A, Computer and Information Security Slide 47

One Setup of DMZ

One dual-homed firewall that
routes messages to internal
network or DMZ as
appropriate

firewall internal
network

DMZ

Internet

November 27, 2023 ECS 235A, Computer and Information Security Slide 48

Another Setup of DMZ

Two firewalls, one (outer
firewall) connected to the
Internet, the other (inner
firewall) connected to internal
network, and the DMZ is
between the firewalls

outer
firewall

internal
network

DMZ

Internet

inner
firewall

November 27, 2023 ECS 235A, Computer and Information Security Slide 49

