Outline for February 17, 2012

Reading: $\S 8.2$

- 1. Deterministic noninterference
 - a. Model of system
 - b. Example
 - c. Relationship of output to states
 - d. Projections and purge functions
- 2. Alternative definition of security policy
 - a. Output-consistent
 - b. Security policy
 - c. Alternate projection function
 - d. Noninterference-secure with respect to the policy r
- 3. Unwinding Theorem
 - a. Locally respects
 - b. Transition-consistent
 - c. Unwinding theorem

Table of Notation

notation	meaning
S	set of subjects s
Σ	set of states σ
O	set of outputs o
Z	set of commands z
C	set of state transition commands (s, z) , where subject s executes command z
C^*	set of possible sequences of commands c_0, \ldots, c_{n_i}
ν	empty sequence
c_s	sequence of commands
$T(c,\sigma_i)$	resulting state when command c is executed in state σ_i
$T^*(c_s, \sigma_i)$	resulting state when command sequence c_s is executed in state σ_i
$P(c,\sigma_i)$	output when command c is executed in state σ_i
$P^*(c_s, \sigma_i)$	output when command sequence c_s is executed in state σ_i
$proj(s, c_s, \sigma_i)$	set of outputs in $P^*(c_s, \sigma_i)$ that subject s is authorized to see
$\pi_{G,A}(c_s)$	subsequence of c_s with all elements (s, z) , $s \in G$ and $z \in A$ deleted
dom(c)	protection domain in which c is executed
$\sim^{dom(c)}$	equivalence relation on system states
$\pi_d'(c_s)$	analogue to π above, but with protection domain and subject included