Outline for February 24, 2012

Reading: §8

- 1. Composing deterministic, noninterference-secure systems
- 2. Nondeducibility
 - a. Event system
 - b. Deducibly secure
 - c. Composing deducibly secure systems
- 3. Generalized noninterference
 - a. Assumptions and nondeducibility
 - b. Composing generalized noninterference systems
 - c. Feedback-free systems
- 4. Restrictiveness
 - a. State machine model
 - b. Composing restrictive systems

Table of Notation

notation

meaning

- S set of subjects s
- $\Sigma \quad \text{set of states } \sigma$
- O set of outputs o
- Z set of commands z
- C set of state transition commands (s, z), where subject s executes command z
- C^* set of possible sequences of commands c_0,\ldots,c_{n_i}
- ν empty sequence
- c_s sequence of commands
- $T(c, \sigma_i)$ resulting state when command c is executed in state σ_i
- $T^*(c_s, \sigma_i)$ resulting state when command sequence c_s is executed in state σ_i
 - $P(c, \sigma_i)$ output when command c is executed in state σ_i
- $P^*(c_s, \sigma_i)$ output when command sequence c_s is executed in state σ_i
- $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s is authorized to see
 - $\pi_{G,A}(c_s)$ subsequence of c_s with all elements $(s, z), s \in G$ and $z \in A$ deleted
 - dom(c) protection domain in which c is executed
 - $\sim^{dom(c)}$ equivalence relation on system states
 - $\pi_d'(c_s)$ analogue to π above, but with protection domain and subject included $w_n \quad v_1,...,v_n$ where $v_i \in C^*$
 - w sequence of elements of C leading up to current state
- cando(w, s, z) true if s can execute z in current state

pass(s, z) give s right to execute z

 v_n

- $prev(w_n) \quad w_{n-1}$
- $last(w_n)$