Outline for April 24, 2013

 ${\bf Reading:} \ \S{5.2.3}{-}5.2.4, \ 5.3, \ 5.4; \ handout$

Assignments due: Homework #2, due April 26, 2013

- 1. Bell-LaPadula: formal model
 - a. Set of requests is R
 - b. Set of decisions is D
 - c. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
 - d. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $t \in T$; latter is an action of system
 - e. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any initial state z_0 that satisfies the simple security condition iff W satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. each $(s, o, x) \in b' b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(s)$ dom $f_o(o)$); and
 - ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$
 - f. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any initial state z_0 that satisfies the *-property relative to S' iff W satisfies the following conditions for each (w, w', f', h') (here f(h))
 - $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'; and
 - ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f', then $(s, o, x) \notin b'$
 - g. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - $(r_i, d_i, (o, m', f', n'), (o, m, f, n)):$
 - i. if $(s, o, x) \in b' b$, then $x \in m'[s, o]$; and ii. if $(s, o, x) \in b$ and $x \in m'[s, o]$, then $(s, o, x) \notin b'$
 - h. Basic Security Theorem: A system $\Sigma(R, D, W, z_0)$ is secure iff z_0 is a secure state and W satisfies the conditions of the above three theorems for each action.
- 2. Using the model
 - a. Define ssc-preserving, *-property-preserving, ds-property-preserving
 - b. Define relation $W(\omega)$
 - c. Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
 - d. Show when adding a state preserves those properties
 - e. Example instantiation: get-read for Multics
- 3. Tranquility
 - a. Strong tranquility
 - b. Weak tranquility
- 4. System Z and the controversy