Outline for May 3, 2013

Reading: $\S8.1-8.2$, [KR02]¹

Assignments due: Homework #3, due May 10, 2013

- 1. Cryptographic Key Infrastructure a. Certificates (X.509, PGP)
- 2. Problem with instantiation of Bell-LaPadula Model
 - a. Covert channel example: what is "writing"?
 - b. Composition of lattices
 - c. Principles of autonomy and security
- 3. Deterministic noninterference
 - a. Model of system
 - b. Example
 - c. Relationship of output to states
 - d. Projections and purge functions

Table of Notation

notation

meaning

- $\begin{array}{ll} S & \text{set of subjects } s \\ \Sigma & \text{set of states } \sigma \end{array}$
- O set of outputs o
- Z set of commands z
- C set of state transition commands (s, z), where subject s executes command z
- C^* set of possible sequences of commands c_0, \ldots, c_{n_i}
- ν empty sequence
- c_s sequence of commands
- $T(c, \sigma_i)$ resulting state when command c is executed in state σ_i
- $T^*(c_s, \sigma_i)$ resulting state when command sequence c_s is executed in state σ_i
 - $P(c, \sigma_i)$ output when command c is executed in state σ_i
- $P^*(c_s, \sigma_i)$ output when command sequence c_s is executed in state σ_i
- $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject s is authorized to see
 - $\pi_{G,A}(c_s)$ subsequence of c_s with all elements $(s, z), s \in G$ and $z \in A$ deleted
 - dom(c) protection domain in which c is executed
 - $\sim^{dom(c)}$ equivalence relation on system states
 - $\pi'_d(c_s)$ analogue to π above, but with protection domain and subject included

¹This is available in the Resources area of SmartSite; look in the folder "Handouts"