Lecture #6

- Schematic Protection Model
 - Structure
 - Safety question

Schematic Protection Model

- Type-based model
 - Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
 - Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a *domain*)
 - Ticket is \mathbf{X}/r , where \mathbf{X} is entity and r right
 - Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Link Predicate

- Idea: *link_i*(**X**, **Y**) if **X** can assert some control right over **Y**
- Conjunction of disjunction of:
 - $-\mathbf{X}/z \in dom(\mathbf{X})$
 - $-\mathbf{X}/z \in dom(\mathbf{Y})$
 - $-\mathbf{Y}/z \in dom(\mathbf{X})$
 - $-\mathbf{Y}/z \in dom(\mathbf{Y})$
 - true

Filter Function

- Range is set of copyable tickets

 Entity type, right
- Domain is subject pairs
- Copy a ticket $\mathbf{X}/r:c$ from $dom(\mathbf{Y})$ to $dom(\mathbf{Z})$
 - $-\mathbf{X}/rc \in dom(\mathbf{Y})$
 - $-link_i(\mathbf{Y}, \mathbf{Z})$
 - $-\tau(\mathbf{Y})/r:c\in f_i(\tau(\mathbf{Y}),\tau(\mathbf{Z}))$
- One filter function per link predicate

Types

- cr(a, b): tickets created when subject of type *a* creates entity of type *b* [*cr* for *create-rule*]
- B object: cr(a, b) ⊆ { b/r:c ∈ RI }
 A gets B/r:c iff b/r:c ∈ cr(a, b)
- **B** subject: cr(a, b) has two subsets
 - $-cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
 - A gets $\mathbf{B}/r:c$ if $b/r:c \in cr_P(a, b)$
 - **B** gets $\mathbf{A}/r:c$ if $a/r:c \in cr_C(a, b)$

Attenuating Create Rule

cr(a, b) attenuating if:

- 1. $cr_C(a, b) \subseteq cr_P(a, b)$ and
- 2. $a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$

Safety Analysis

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 - Called a *maximal state*

Definitions

- System begins at initial sate
- Authorized operation causes *legal transition*
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state

More Definitions

- States represented by ^h
- Set of subjects *SUB^h*, entities *ENT^h*
- Link relation in context of state *h link^h*
- Dom relation in context of state *h* dom^h

$path^h(\mathbf{X}, \mathbf{Y})$

- X, Y connected by one link or a sequence of links
- Formally, either of these hold:
 - for some i, $link_i^h(\mathbf{X}, \mathbf{Y})$; or
 - there is a sequence of subjects $\mathbf{X}_0, \dots, \mathbf{X}_n$ such that $link_i^h(\mathbf{X}, \mathbf{X}_0)$, $link_i^h(\mathbf{X}_n, \mathbf{Y})$, and for k = 1, ..., n, $link_i^h(\mathbf{X}_{k-1}, \mathbf{X}_k)$
- If multiple such paths, refer to $path_j^h(\mathbf{X}, \mathbf{Y})$

Capacity *cap*(*path*^{*h*}(**X**,**Y**))

- Set of tickets that can flow over *path^h*(**X**,**Y**)
 - If $link_i^h(\mathbf{X},\mathbf{Y})$: set of tickets that can be copied over the link (i.e., $f_i(\tau(\mathbf{X}), \tau(\mathbf{Y}))$)
 - Otherwise, set of tickets that can be copied over all links in the sequence of links making up the path^h(X,Y)
- Note: all tickets (except those for the final link) *must* be copyable

Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be *m path^hs* between subjects **X** and **Y** in state *h*. Then *flow function* $flow^h: SUB^h \times SUB^h \rightarrow 2^{T \times R}$

is:

$$flow^h(\mathbf{X},\mathbf{Y}) = \bigcup_{i=1,\dots,m} cap(path_i^h(\mathbf{X},\mathbf{Y}))$$

ECS 235B Spring Quarter 2013

Properties of Maximal State

- Maximizes flow between all pairs of subjects
 - State is called *
 - Ticket in *flow**(X,Y) means there exists a sequence of operations that can copy the ticket from X to Y
- Questions
 - Is maximal state unique?
 - Does every system have one?

Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $\mathbf{X}, \mathbf{Y} \in SUB^0$, $flow^g(\mathbf{X}, \mathbf{Y}) \subseteq flow^h(\mathbf{X}, \mathbf{Y})$.
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state *m* is maximal iff $h \leq_0 m$ for every derivable state *h*
- Intuition: flow function contains all tickets that can be transferred from one subject to another

- All maximal states in same equivalence class

Maximal States

- Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$
- Outline of proof: induction
 - Basis: $H = \emptyset$; trivially true
 - Step: |H'| = n + 1, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.

Outline of Proof

- M interleaving histories of g, h which:
 - Preserves relative order of transitions in g, h
 - Omits second create operation if duplicated
- *M* ends up at state *m*
- If $path^{g}(\mathbf{X},\mathbf{Y})$ for $\mathbf{X}, \mathbf{Y} \in SUB^{g}$, $path^{m}(\mathbf{X},\mathbf{Y})$ - So $g \leq_{0} m$
- If $path^{h}(\mathbf{X},\mathbf{Y})$ for $\mathbf{X}, \mathbf{Y} \in SUB^{h}$, $path^{m}(\mathbf{X},\mathbf{Y})$ - So $h \leq_{0} m$
- Hence m maximal state in H'

Answer to Second Question

- Theorem: every system has a maximal state *
- Outline of proof: *K* is set of derivable states containing exactly one state from each equivalence class of derivable states
 - Consider X, Y in SUB^0 . Flow function's range is $2^{T\times R}$, so can take at most $2^{|T\times R|}$ values. As there are $|SUB^0|^2$ pairs of subjects in SUB^0 , at most $2^{|T\times R|} |SUB^0|^2$ distinct equivalence classes; so *K* is finite
- Result follows from lemma

Safety Question

• In this model:

Is there a derivable state with $\mathbf{X}/r:c \in dom(\mathbf{A})$, or does there exist a subject **B** with ticket \mathbf{X}/rc in the initial state in *flow**(**B**,**A**)?

- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state *h*.
- State *u* corresponds to *h* but with minimal number of new entities created such that maximal state *m* can be derived with no create operations
 - So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable.