
April 15, 2013	

 ECS 235B Spring Quarter 2013	

Lecture #7	

•  Schematic Protection Model	

–  Safety question	

•  Expressive Power	

–  HRU and SPM	

•  Multiparent create	

– ESPM	

Slide #1	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Formal Definition	

•  Definition: g ≤0 h holds iff for all X, Y ∈ SUB0,

flowg(X,Y) ⊆ flowh(X,Y).	

–  Note: if g ≤0 h and h ≤0 g, then g, h equivalent	

–  Defines set of equivalence classes on set of derivable

states	

•  Definition: for a given system, state m is maximal

iff h ≤0 m for every derivable state h	

•  Intuition: flow function contains all tickets that

can be transferred from one subject to another	

–  All maximal states in same equivalence class	

Slide #2	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Maximal States	

•  Lemma. Given arbitrary finite set of states
H, there exists a derivable state m such that
for all h ∈ H, h ≤0 m	

•  Theorem: every system has a maximal state
*	

Slide #3	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Safety Question	

•  In this model:	

	

Is there a derivable state with X/r:c ∈ dom(A),
or does there exist a subject B with ticket X/rc
in the initial state in flow*(B,A)?	

•  To answer: construct maximal state and test	

– Consider acyclic attenuating schemes; how do

we construct maximal state?	

Slide #4	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Intuition	

•  Consider state h.	

•  State u corresponds to h but with minimal number

of new entities created such that maximal state m
can be derived with no create operations	

–  So if in history from h to m, subject X creates two

entities of type a, in u only one would be created;
surrogate for both	

•  m can be derived from u in polynomial time, so if
u can be created by adding a finite number of
subjects to h, safety question decidable.	

Slide #5	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Fully Unfolded State	

•  State u derived from state 0 as follows:	

–  delete all loops in cc; new relation ccʹ′	

–  mark all subjects as folded	

–  while any X ∈ SUB0 is folded	

•  mark it unfolded	

•  if X can create entity Y of type y, it does so (call this the y-

surrogate of X); if entity Y ∈ SUBg, mark it folded	

–  if any subject in state h can create an entity of its own

type, do so	

•  Now in state u	

Slide #6	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Termination	

•  First loop terminates as SUB0 finite	

•  Second loop terminates:	

–  Each subject in SUB0 can create at most | TS | children,
and | TS | is finite	

–  Each folded subject in | SUBi | can create at most | TS |
– i children	

–  When i = | TS |, subject cannot create more children;
thus, folded is finite	

–  Each loop removes one element	

•  Third loop terminates as SUBh is finite	

Slide #7	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Surrogate	

•  Intuition: surrogate collapses multiple subjects of

same type into single subject that acts for all of
them	

•  Definition: given initial state 0, for every derivable
state h define surrogate function σ:ENTh→ENTh
by:	

–  if X in ENT0, then σ(X) = X	

–  if Y creates X and τ(Y) = τ(X), then σ(X) = σ(Y)	

–  if Y creates X and τ(Y) ≠ τ(X), then σ(X) = τ(Y)-

surrogate of σ(Y)	

Slide #8	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Implications	

•  τ(σ(X)) = τ(X)	

•  If τ(X) = τ(Y), then σ(X) = σ(Y)	

•  If τ(X) ≠ τ(Y), then	

–  σ(X) creates σ(Y) in the construction of u	

–  σ(X) creates entities Xʹ′ of type τ(X) = τ(σ(X))	

•  From these, for a system with an acyclic
attenuating scheme, if X creates Y, then tickets
that would be introduced by pretending that σ(X)
creates σ(Y) are in domu(σ(X)) and domu(σ(Y))	

Slide #9	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Deriving Maximal State	

•  Idea	

– Reorder operations so that all creates come first

and replace history with equivalent one using
surrogates	

– Show maximal state of new history is also that
of original history	

– Show maximal state can be derived from initial
state	

Slide #10	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Reordering	

•  H legal history deriving state h from state 0	

•  Order operations: first create, then demand, then

copy operations	

•  Build new history G from H as follows:	

–  Delete all creates	

–  “X demands Y/r:c” becomes “σ(X) demands σ(Y)/r:c”	

–  “Y copies X /r:c from Y” becomes “σ(Y) copies
σ(X)/r:c from σ(Y)	

Slide #11	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Tickets in Parallel	

•  Theorem	

– All transitions in G legal; if X/r:c ∈ domh(Y),

then σ(X)/r:c ∈ domh(σ(Y))	

•  Outline of proof: induct on number of copy

operations in H	

Slide #12	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Basis	

•  H has create, demand only; so G has demand only.
σ preserves type, so by construction every demand
operation in G legal.	

•  3 ways for X/r:c to be in domh(Y):	

–  X/r:c ∈ dom0(Y) means X, Y ∈ ENT0, so trivially
σ(X)/r:c ∈ domg(σ(Y)) holds	

–  A create added X/r:c ∈ domh(Y): previous lemma says
σ(X)/r:c ∈ domg(σ(Y)) holds	

–  A demand added X/r:c ∈ domh(Y): corresponding
demand operation in G gives σ(X)/r:c ∈ domg(σ(Y))	

Slide #13	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Hypothesis	

•  Claim holds for all histories with k copy
operations	

•  History H has k+1 copy operations	

– Hʹ′ initial sequence of H composed of k copy

operations	

–  hʹ′ state derived from Hʹ′	

Slide #14	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Step	

•  Gʹ′ sequence of modified operations
corresponding to Hʹ′; gʹ′ derived state	

– Gʹ′ legal history by hypothesis	

•  Final operation is “Z copied X/r:c from Y”	

– So h, hʹ′ differ by at most X/r:c ∈ domh(Z)	

– Construction of G means final operation is	

	

σ(X)/r:c ∈ domg(σ(Y))	

•  Proves second part of claim	

Slide #15	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Step	

•  Hʹ′ legal, so for H to be legal, we have:	

1.  X/rc ∈ domhʹ′(Y)	

2.  linki

hʹ′(Y, Z)	

3.  τ(X/r:c) ∈ fi(τ(Y), τ(Z))	

•  By IH, 1, 2, as X/r:c ∈ domhʹ′(Y),	

	

σ(X)/r:c ∈ domgʹ′ (σ(Y)) and linki

gʹ′(σ(Y), σ(Z))	

•  As σ preserves type, IH and 3 imply	

τ(σ(X)/r:c) ∈ fi(τ((σ(Y)), τ(σ(Z)))	

•  IH says Gʹ′ legal, so G is legal	

Slide #16	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Corollary	

•  If linki
h(X, Y), then linki

g(σ(X), σ(Y))	

Slide #17	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Main Theorem	

•  System has acyclic attenuating scheme	

•  For every history H deriving state h from initial

state, there is a history G without create operations
that derives g from the fully unfolded state u such
that	

(∀X,Y ∈ SUBh)[flowh(X, Y) ⊆ flowg(σ(X), σ(Y))]	

•  Meaning: any history derived from an initial

statecan be simulated by corresponding history
applied to the fully unfolded state derived from the
initial state	

Slide #18	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Proof	

•  Outline of proof: show that every
pathh(X,Y) has corresponding pathg(σ(X),
σ(Y)) such that cap(pathh(X,Y)) =
cap(pathg(σ(X), σ(Y)))	

– Then corresponding sets of tickets flow through

systems derived from H and G	

– As initial states correspond, so do those

systems	

•  Proof by induction on number of links	

Slide #19	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Basis and Hypothesis	

•  Length of pathh(X, Y) = 1. By definition of
pathh, linki

h(X, Y), hence linki
g(σ(X), σ(Y)).

As σ preserves type, this means	

cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)))	

•  Now assume this is true when pathh(X, Y)
has length k	

Slide #20	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Step	

•  Let pathh(X, Y) have length k+1. Then there is a Z
such that pathh(X, Z) has length k and linkj

h(Z, Y).	

•  By IH, there is a pathg(σ(X), σ(Z)) with same

capacity as pathh(X, Z)	

•  By corollary, linkj

g(σ(Z), σ(Y))	

•  As σ preserves type, there is pathg(σ(X), σ(Y))

with	

cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)))	

Slide #21	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Implication	

•  Let maximal state corresponding to v be #u	

–  Deriving history has no creates	

–  By theorem,	

(∀X,Y ∈ SUBh)[flowh(X, Y) ⊆ flow#u(σ(X), σ(Y))]	

–  If X ∈ SUB0, σ(X) = X, so:	

(∀X,Y ∈ SUB0)[flowh(X, Y) ⊆ flow#u(X, Y)]	

•  So #u is maximal state for system with acyclic attenuating
scheme	

–  #u derivable from u in time polynomial to |SUBu|	

–  Worst case computation for flow#u is exponential in |TS|	

Slide #22	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Safety Result	

•  If the scheme is acyclic and attenuating, the
safety question is decidable	

Slide #23	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Expressive Power	

•  How do the sets of systems that models can
describe compare?	

–  If HRU equivalent to SPM, SPM provides more

specific answer to safety question	

–  If HRU describes more systems, SPM applies

only to the systems it can describe	

Slide #24	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

HRU vs. SPM	

•  SPM more abstract 	

–  Analyses focus on limits of model, not details of

representation	

•  HRU allows revocation	

–  SMP has no equivalent to delete, destroy	

•  HRU allows multiparent creates	

–  SMP cannot express multiparent creates easily, and not
at all if the parents are of different types because
can•create allows for only one type of creator	

Slide #25	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Multiparent Create	

•  Solves mutual suspicion problem	

– Create proxy jointly, each gives it needed rights	

•  In HRU:	

command multicreate(s0, s1, o)!
if r in a[s0, s1] and r in a[s1, s0]!
then!
!create object o;!
!enter r into a[s0, o];!
!enter r into a[s1, o];!
end!

Slide #26	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

SPM and Multiparent Create	

•  cc extended in obvious way	

–  cc ⊆ TS × … × TS × T	

•  Symbols	

–  X1, …, Xn parents, Y created	

–  R1,i, R2,i, R3, R4,i ⊆ R	

•  Rules	

–  crP,i(τ(X1), …, τ(Xn)) = Y/R1,1 ∪ Xi/R2,i	

–  crC(τ(X1), …, τ(Xn)) = Y/R3 ∪ X1/R4,1 ∪ … ∪ Xn/R4,n	

Slide #27	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Example	

•  Anna, Bill must do something cooperatively	

–  But they don’t trust each other	

•  Jointly create a proxy	

–  Each gives proxy only necessary rights	

•  In ESPM:	

–  Anna, Bill type a; proxy type p; right x ∈ R	

–  cc(a, a) = p	

–  crAnna(a, a, p) = crBill(a, a, p) = ∅	

–  crproxy(a, a, p) = { Anna/x, Bill/x }	

Slide #28	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

2-Parent Joint Create Suffices	

•  Goal: emulate 3-parent joint create with 2-
parent joint create	

•  Definition of 3-parent joint create (subjects
P1, P2, P3; child C):	

–  cc(τ(P1), τ(P2), τ(P3)) = c ⊆ T	

–  crP1(τ(P1), τ(P2), τ(P3)) = c/R1,1 ∪ τ(P1)/R2,1	

–  crP2(τ(P1), τ(P2), τ(P3)) = c/R2,1 ∪ τ(P2)/R2,2	

–  crP3(τ(P1), τ(P2), τ(P3)) = c/R3,1 ∪ τ(P3)/R2,3	

Slide #29	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

General Approach	

•  Define agents for parents and child	

– Agents act as surrogates for parents	

–  If create fails, parents have no extra rights	

–  If create succeeds, parents, child have exactly

same rights as in 3-parent creates	

•  Only extra rights are to agents (which are never used

again, and so these rights are irrelevant)	

Slide #30	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Entities and Types	

•  Parents P1, P2, P3 have types p1, p2, p3	

•  Child C of type c	

•  Parent agents A1, A2, A3 of types a1, a2, a3	

•  Child agent S of type s	

•  Type t is parentage	

–  if X/t ∈ dom(Y), X is Y’s parent	

•  Types t, a1, a2, a3, s are new types	

Slide #31	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Can•Create	

•  Following added to can•create:	

–  cc(p1) = a1	

–  cc(p2, a1) = a2	

–  cc(p3, a2) = a3	

•  Parents creating their agents; note agents have maximum of 2
parents	

–  cc(a3) = s	

•  Agent of all parents creates agent of child	

–  cc(s) = c	

•  Agent of child creates child	

Slide #32	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Creation Rules	

•  Following added to create rule:	

–  crP(p1, a1) = ∅	

–  crC(p1, a1) = p1/Rtc	

•  Agent’s parent set to creating parent; agent has all rights over
parent	

–  crPfirst(p2, a1, a2) = ∅	

–  crPsecond(p2, a1, a2) = ∅	

–  crC(p2, a1, a2) = p2/Rtc ∪ a1/tc	

•  Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)	

Slide #33	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Creation Rules	

–  crPfirst(p3, a2, a3) = ∅	

–  crPsecond(p3, a2, a3) = ∅	

–  crC(p3, a2, a3) = p3/Rtc ∪ a2/tc	

•  Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)	

–  crP(a3, s) = ∅	

–  crC(a3, s) = a3/tc	

•  Child’s agent has third agent as parent crP(a3, s) = ∅	

–  crP(s, c) = C/Rtc	

–  crC(s, c) = c/R3t	

•  Child’s agent gets full rights over child; child gets R3 rights
over agent	

Slide #34	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Link Predicates	

•  Idea: no tickets to parents until child created	

–  Done by requiring each agent to have its own parent
rights	

–  link1(A1, A2) = A1/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)	

–  link1(A2, A3) = A2/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)	

–  link2(S, A3) = A3/t ∈ dom(S) ∧ C/t ∈ dom(C)	

–  link3(A1, C) = C/t ∈ dom(A1)	

–  link3(A2, C) = C/t ∈ dom(A2)	

–  link3(A3, C) = C/t ∈ dom(A3)	

–  link4(A1, P1) = P1/t ∈ dom(A1) ∧ A1/t ∈ dom(A1)	

–  link4(A2, P2) = P2/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)	

–  link4(A3, P3) = P3/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)	

Slide #35	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Filter Functions	

•  f1(a2, a1) = a1/t ∪ c/Rtc	

•  f1(a3, a2) = a2/t ∪ c/Rtc	

•  f2(s, a3) = a3/t ∪ c/Rtc	

•  f3(a1, c) = p1/R4,1	

•  f3(a2, c) = p2/R4,2	

•  f3(a3, c) = p3/R4,3	

•  f4(a1, p1) = c/R1,1 ∪ p1/R2,1	

•  f4(a2, p2) = c/R1,2 ∪ p2/R2,2	

•  f4(a3, p3) = c/R1,3 ∪ p3/R2,3	

Slide #36	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Construction	

Create A1, A2, A3, S, C; then	

•  P1 has no relevant tickets	

•  P2 has no relevant tickets	

•  P3 has no relevant tickets	

•  A1 has P1/Rtc	

•  A2 has P2/Rtc ∪ A1/tc	

•  A3 has P3/Rtc ∪ A2/tc	

•  S has A3/tc ∪ C/Rtc	

•  C has C/R3	

Slide #37	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Construction	

•  Only link2(S, A3) true ⇒ apply f2	

–  A3 has P3/Rtc ∪ A2/t ∪ A3/t ∪ C/Rtc	

•  Now link1(A3, A2) true ⇒ apply f1	

–  A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc	

•  Now link1(A2, A1) true ⇒ apply f1	

–  A1 has P2/Rtc ∪ A1/tc ∪ A1/t ∪ C/Rtc	

•  Now all link3s true ⇒ apply f3	

–  C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3	

Slide #38	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Finish Construction	

•  Now link4 is true ⇒ apply f4	

– P1 has C/R1,1 ∪ P1/R2,1	

– P2 has C/R1,2 ∪ P2/R2,2	

– P3 has C/R1,3 ∪ P3/R2,3	

•  3-parent joint create gives same rights to P1,
P2, P3, C	

•  If create of C fails, link2 does not hold, so
construction fails	

Slide #39	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Theorem	

•  The two-parent joint creation operation can
implement an n-parent joint creation
operation with a fixed number of additional
types and rights, and augmentations to the
link predicates and filter functions.	

•  Proof: by construction, as above	

– Difference is that the two systems need not start

at the same initial state	

Slide #40	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Theorems	

•  Monotonic ESPM and the monotonic HRU
model are equivalent.	

•  Safety question in ESPM also decidable if
acyclic attenuating scheme	

– Proof similar to that for SPM	

Slide #41	

Expressiveness	

•  Graph-based representation to compare models	

•  Graph	

–  Vertex: represents entity, has static type	

–  Edge: represents right, has static type	

•  Graph rewriting rules:	

–  Initial state operations create graph in a particular state	

–  Node creation operations add nodes, incoming edges	

–  Edge adding operations add new edges between

existing vertices	

ECS 235B Spring Quarter 2013	

April 15, 2013	

 Slide #42	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Example: 3-Parent Joint Creation	

•  Simulate with 2-parent	

– Nodes P1, P2, P3 parents	

– Create node C with type c with edges of type e	

– Add node A1 of type a and edge from P1 to A1

of type e´	

P2	

 P3	

P1	

A1	

Slide #43	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Next Step	

•  A1, P2 create A2; A2, P3 create A3	

•  Type of nodes, edges are a and e´	

P2	

 P3	

P1	

A1	

 A2	

A3	

Slide #44	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Next Step	

•  A3 creates S, of type a	

•  S creates C, of type c	

S	

C	

P2	

 P3	

P1	

A1	

 A2	

A3	

Slide #45	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Last Step	

•  Edge adding operations:	

– P1→A1→A2→A3→S→C: P1 to C edge type e	

– P2→A2→A3→S→C: P2 to C edge type e	

– P3→A3→S→C: P3 to C edge type e	

S	

C	

P2	

 P3	

P1	

A1	

A2	

A3	

Slide #46	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Definitions	

•  Scheme: graph representation as above	

•  Model: set of schemes	

•  Schemes A, B correspond if graph for both

is identical when all nodes with types not in
A and edges with types in A are deleted	

Slide #47	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Example	

•  Above 2-parent joint creation simulation in
scheme TWO	

•  Equivalent to 3-parent joint creation scheme
THREE in which P1, P2, P3, C are of same
type as in TWO, and edges from P1, P2, P3
to C are of type e, and no types a and e´
exist in TWO	

Slide #48	

April 15, 2013	

 ECS 235B Spring Quarter 2013	

Simulation	

Scheme A simulates scheme B iff	

•  every state B can reach has a corresponding state

in A that A can reach; and	

•  every state that A can reach either corresponds to a

state B can reach, or has a successor state that
corresponds to a state B can reach	

–  The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones
in TWO in the simulation of THREE	

Slide #49	

