Lecture #7/

e Schematic Protection Model
— Safety question

* Expressive Power
— HRU and SPM

e Multiparent create
— ESPM

April 15,2013 ECS 235B Spring Quarter 2013 Slide #1

Formal Definition

 Definition: g <, & holds iff for all X, Y € SUB",
fAows(X,Y) C flow"(X,Y).
— Note: if g <, h and h <, g, then g, h equivalent

— Defines set of equivalence classes on set of derivable
states

e Definition: for a given system, state m 1s maximal
ift & <, m tor every derivable state h

e Intuition: flow function contains all tickets that
can be transferred from one subject to another

— All maximal states in same equivalence class

April 15,2013 ECS 235B Spring Quarter 2013 Slide #2

Maximal States

 Lemma. Given arbitrary finite set of states

H, there exists a derivable state m such that
forallh€E H,h<ym

 Theorem: every system has a maximal state
S

April 15,2013 ECS 235B Spring Quarter 2013 Slide #3

Satety Question

e In this model:

Is there a derivable state with X/r:c € dom(A),
or does there exist a subject B with ticket X/rc

n t

ne 1nitial state in flow*(B,A)?

e To answer: construct maximal state and test

— Consider acyclic attenuating schemes; how do

W¢e

April 15,2013

construct maximal state?

ECS 235B Spring Quarter 2013 Slide #4

Intuition

e Consider state A.

e State u corresponds to 4 but with minimal number
of new entities created such that maximal state m
can be derived with no create operations

— So 1f in history from / to m, subject X creates two
entities of type a, in u only one would be created;
surrogate for both

e m can be derived from u in polynomial time, so if
u can be created by adding a finite number of
subjects to A, safety question decidable.

April 15,2013 ECS 235B Spring Quarter 2013 Slide #5

Fully Unfolded State

e State u derived from state O as follows:
— delete all loops in cc; new relation cc’
— mark all subjects as folded

— while any X € SUB? is folded

 mark it unfolded

e if X can create entity Y of type y, it does so (call this the y-
surrogate of X); if entity Y € SUBS, mark it folded

— 1f any subject in state 4 can create an entity of its own
type, do so

e Now iIn state u

April 15,2013 ECS 235B Spring Quarter 2013 Slide #6

Termination

e First loop terminates as SUB finite

e Second loop terminates:

— Each subject in SUB? can create at most | 7S | children,
and | TS | 1s finite

— Each folded subject in | SUB' | can create at most | 7S |
— 1 children

— When i =1| TS |, subject cannot create more children;
thus, folded is finite

— Each loop removes one element
e Third loop terminates as SUB" is finite

April 15,2013 ECS 235B Spring Quarter 2013 Slide #7

Surrogate

* Intuition: surrogate collapses multiple subjects of

same type into single subject that acts for all of
them

e Definition: given initial state O, for every derivable
state & define surrogate function o:ENT'—ENT"
by:

— if X in ENTY, then o(X) = X
— 1f Y creates X and t©(Y) = 1(X), then o(X) = o(Y)

— 1f Y creates X and t©(Y) # t©(X), then o(X) =t(Y)-
surrogate of o(Y)

April 15,2013 ECS 235B Spring Quarter 2013 Slide #8

Implications

* t(0(X)) =TtX)
e If t(X) = 1(Y). then o(X) = o(Y)
e If v(X)#1t(Y), then
— 0(X) creates o(Y) 1n the construction of u
— 0(X) creates entities X' of type t©(X) = t(0(X))

* From these, for a system with an acyclic
attenuating scheme, if X creates Y, then tickets
that would be introduced by pretending that o(X)
creates 0(Y) are 1n dom*(o(X)) and dom*(o(Y))

April 15,2013 ECS 235B Spring Quarter 2013 Slide #9

Deriving Maximal State

e [dea

— Reorder operations so that all creates come first
and replace history with equivalent one using
surrogates

— Show maximal state of new history 1s also that
of original history

— Show maximal state can be derived from initial
state

April 15,2013 ECS 235B Spring Quarter 2013 Slide #10

Reordering

 H legal history deriving state 4 from state O

e Order operations: first create, then demand, then
COpy operations
* Build new history G from H as follows:

— Delete all creates
— “X demands Y/r:c” becomes “o(X) demands o(Y)/r:c”

— "Y copies X /r:c from Y~ becomes “0(Y) copies
o(X)/r:c from o(Y)

April 15,2013 ECS 235B Spring Quarter 2013 Slide #11

Tickets 1n Parallel

e Theorem

— All transitions in G legal; if X/r:c € dom"(Y),
then o(X)/r:c € dom"(o(Y))

e Outline of proof: induct on number of copy
operations in H

April 15,2013 ECS 235B Spring Quarter 2013 Slide #12

Basis

e H has create, demand only; so G has demand only.
O preserves type, so by construction every demand

operation in G legal.
e 3 ways for X/r:c to be in dom"(Y):

— X/r:c € dom®(Y) means X, Y € ENTV, so trivially
o(X)/r:c € dom8(o(Y)) holds

— A create added X/r:c € dom(Y): previous lemma says
o(X)/r:c € dom8(o(Y)) holds

— A demand added X/r:c € dom"(Y): corresponding
demand operation in G gives o(X)/r:.c € doms(o(Y))

April 15,2013 ECS 235B Spring Quarter 2013 Slide #13

Hypothesis

e Claim holds for all histories with k copy
operations
e History H has k+1 copy operations

— H' initial sequence of H composed of k copy
operations

— h' state derived from H'

April 15,2013 ECS 235B Spring Quarter 2013 Slide #14

Step

e G’sequence of modified operations
corresponding to H’, g"derived state

— G'legal history by hypothesis
* Final operation is “Z copied X/r:c from Y
— So h, h' differ by at most X/r:c € dom’(Z)
— Construction of G means final operation 1s
o(X)/r:c € doms(o(Y))
* Proves second part of claim

April 15,2013 ECS 235B Spring Quarter 2013 Slide #15

Step

e H’legal, so for H to be legal, we have:

1. X/rc € dom"(Y)

2. link(Y,Z)

3. w(X/ric) E£((Y), WZ))
e ByIH, 1,2, as X/r:c € dom"(Y),

o(X)/r:c € doms (o(Y)) and link 3 (0(Y), o(Z))
e As o preserves type, IH and 3 imply

T(o(X)/r:c) € f(t((0(Y)), ©(0(Z)))

e IH says G'legal, so G is legal

April 15,2013 ECS 235B Spring Quarter 2013 Slide #16

Corollary

e If link(X, Y), then link 4(o(X), o(Y))

April 15,2013 ECS 235B Spring Quarter 2013 Slide #17

Main Theorem

e System has acyclic attenuating scheme

e For every history H deriving state 4 from initial
state, there 1s a history G without create operations
that derives g from the fully unfolded state u such
that

(VXY € SUBM[flow"(X,Y) C flows(c(X), o(Y))]
 Meaning: any history derived from an initial
statecan be simulated by corresponding history
applied to the fully unfolded state derived from the
initial state

April 15,2013 ECS 235B Spring Quarter 2013 Slide #18

Proof

e Outline of proof: show that every
path’(X,Y) has corresponding path$(o(X),
o0(Y)) such that cap(path(X,Y)) =
cap(path$(o(X), o(Y)))

— Then corresponding sets of tickets flow through
systems derived from H and G

— As 1nitial states correspond, so do those
systems

* Proof by induction on number of links

April 15,2013 ECS 235B Spring Quarter 2013 Slide #19

Basis and Hypothesis

e Length of path"(X,Y) = 1. By definition of
path”, link(X,Y), hence link#(c(X), o(Y)).
As O preserves type, this means
cap(path"(X,Y)) = cap(path$(o(X), o(Y)))

e Now assume this is true when path"(X,Y)
has length k

April 15,2013 ECS 235B Spring Quarter 2013 Slide #20

Step

e Let path(X,Y) have length k+1. Then there is a Z
such that path"(X, Z) has length k and link{(Z,Y).

e By IH, there 1s a path8(o(X), 0(Z.)) with same
capacity as path"(X, Z.)
* By corollary, link$(c(Z), o(Y))
* As o preserves type, there 1s path$(o(X), o(Y))
with
cap(path"(X,Y)) = cap(paths(o(X), o(Y)))

April 15,2013 ECS 235B Spring Quarter 2013 Slide #21

Implication

e Let maximal state corresponding to v be #u
— Deriving history has no creates

— By theorem,
(VX,Y € SUBY[flow"(X,Y) C flow'(5(X), 5(Y))]
_ IfX ESUB, 6(X) = X, s0:
(VX,Y € SUB[flow'(X,Y) C flow" (X, Y)]
e So #u 1s maximal state for system with acyclic attenuating
scheme
— #u derivable from u in time polynomial to ISUB"

— Worst case computation for flow** is exponential in ITS!

April 15,2013 ECS 235B Spring Quarter 2013 Slide #22

Safety Result

e If the scheme 1s acyclic and attenuating, the
safety question 1s decidable

April 15,2013 ECS 235B Spring Quarter 2013 Slide #23

Expressive Power

 How do the sets of systems that models can
describe compare’?

— It HRU equivalent to SPM, SPM provides more
specific answer to safety question

— If HRU describes more systems, SPM applies
only to the systems it can describe

April 15,2013 ECS 235B Spring Quarter 2013 Slide #24

HRU vs. SPM

e SPM more abstract

— Analyses focus on limits of model, not details of
representation

e HRU allows revocation
— SMP has no equivalent to delete, destroy
e HRU allows multiparent creates

— SMP cannot express multiparent creates easily, and not
at all if the parents are of different types because
canecreate allows for only one type of creator

April 15,2013 ECS 235B Spring Quarter 2013 Slide #25

Multiparent Create

e Solves mutual suspicion problem
— Create proxy jointly, each gives it needed rights

 In HRU:

command multicreate(s,, S;, O)
if r in a[s,, s;] and r in a[s;, S;]
then
create object o;
enter r into a[s,, o];
enter r into al[s;, 0];
end

April 15,2013 ECS 235B Spring Quarter 2013 Slide #26

SPM and Multiparent Create

e cc extended 1n obvious way
—ccCTSx ... xTSxT

* Symbols
- X, ..., X, parents, Y created
— R, Ry;,R5, Ry ;R
e Rules
— crp (X)), ..., uX)) = Y/R, | UX/R,,
— cre(t(X)), ..., tX))=Y/R; UX|/R,; U...UX /R,

April 15,2013 ECS 235B Spring Quarter 2013 Slide #27

Example

e Anna, Bill must do something cooperatively
— But they don’ t trust each other

e Jointly create a proxy
— Each gives proxy only necessary rights

e In ESPM:
— Anna, Bill type a; proxy type p; right x € R
— cc(a,a)=p
— cra.(a,a, p)=crgy(a,a,p)=3
(a,a,p)={ Anna/x, Bill/x }

cr proxy

April 15,2013 ECS 235B Spring Quarter 2013 Slide #28

2-Parent Joint Create Suffices

e Goal: emulate 3-parent joint create with 2-
parent joint create

e Definition of 3-parent joint create (subjects
P,,P,, P;; child C):
—cc(t(P)), t(P,),t(Py) =c & T
— crp (T(P)), ©(P,), ©(P3)) = ¢/R; ; U T(P))/R,
— crpy(T(P)), T(P,), ©(P3)) = ¢/R, ; U T(P,)/R,,
— crps(T(Py), T(P)), T©(P;)) = ¢/R;) U T(P3)/R, 5

April 15,2013 ECS 235B Spring Quarter 2013 Slide #29

General Approach

e Define agents for parents and child
— Agents act as surrogates for parents
— If create fails, parents have no extra rights

— If create succeeds, parents, child have exactly
same rights as in 3-parent creates

* Only extra rights are to agents (which are never used
again, and so these rights are irrelevant)

April 15,2013 ECS 235B Spring Quarter 2013 Slide #30

Entities and Types

e Parents P, P,, P; have types p,, p,, p;
e Child C of type ¢
* Parent agents A, A,, A, of types a,, a,, a,
e Child agent S of type s
 Type t1s parentage
—1f X/t € dom(Y), X 1s Y’s parent
* Typest,a,,a,,a,,s are new types

April 15,2013 ECS 235B Spring Quarter 2013 Slide #31

CaneCreate

* Following added to canecreate:

April 15

cc(p,) = a,

cc(ps, ay) = a,

e Parents creating their agents; note agents have maximum of 2

parents

cc(as) =s

» Agent of all parents creates agent of child

cc(s)=c

e Agent of child creates child

,2013

ECS 235B Spring Quarter 2013

Slide #32

Creation Rules

* Following added to create rule:
- crp(pr,a) =9
— cre(py,ay) =p,/Ric

e Agent’s parent set to creating parent; agent has all rights over
parent

— CTpirg(Py, Ay) = D
o CrPsecond(pZ’ ap, a2) =

— cre(p,, ay, a,) = p,/Rtc U a,/tc

» Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

April 15,2013 ECS 235B Spring Quarter 2013 Slide #33

Creation Rules

— CTpirg(P3, Gy, 3) = O
- CrPsecond(pfS’ ds, 613) =0
— cre(ps, a,, as) = ps/Ric U a,/tc

e Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

— crplas, §) =
— crelas, §) = ayltc
e Child’s agent has third agent as parent crp(as, s) =D
— crp(s, c) = C/Rtc
— cr(s, ¢) = c/Ryt

e Child’s agent gets full rights over child; child gets R, rights
over agent

April 15,2013 ECS 235B Spring Quarter 2013 Slide #34

[.ink Predicates

e Idea: no tickets to parents until child created

— Done by requiring each agent to have its own parent
rights
— link,(A{, A,) = A/t € dom(A,) A A,/t € dom(A,)
— link,(A,, A;) = A,/t € dom(A;) A A/t € dom(A;)
— linky(S, A;) = A/t € dom(S) A C/t € dom(C)
— linky(A,, C) = C/t € dom(A)
— links(A,, C) = C/t € dom(A,)
— linky(A5, C) = C/t € dom(A;)
— link,(A,,P) =P/t dom(A)) A A/t € dom(A,)
— link,(A,,P,) =P,/t € dom(A,) A A,/t € dom(A,)
— link,(A5, Py) = Py/t € dom(A;) A As/t € dom(Aj)
April 15,2013 ECS 235B Spring Quarter 2013 Slide #35

Filter Functions

* fila,,a,)=a,/t Uc/Rtc

* filas,a,) =a,/t Uc/Rtc

* f5(s,as) =a,/t U c/Ric

* fia;, ¢) =pi/Ry,

* f3(ay,¢) =py/Ry,

* f3(a3,¢) = py/R, 3

* Jdlay,p) =c/R,; Up/R,,
* Jilay, py) = ¢/R, , U py/R;
* falas, p3) = cIR, 3 U p3/Ry

April 15,2013 ECS 235B Spring Quarter 2013

Slide #36

Construction

Create A, A,, A;, S, C; then

=

; has no relevant tickets

=~

, has no relevant tickets

=

; has no relevant tickets
, has P,/Rtc

, has P,/Rtc U A /tc

; has P;/Rtc U A, /tc

S has A,/tc U C/Rtc

C has C/R,

> > >

April 15,2013 ECS 235B Spring Quarter 2013

Slide #37

Construction

* Only link,(S, A;) true = apply f,
— A has P;/Rtc U A,/t U A,/t U C/Rtc

 Now link,(A;, A,) true = apply f,
— A, has P,/Rtc U A,/tc U A,/t U C/Rtc

 Now link,(A,, A)) true = apply f,
— A, has P,/Rtc U A,/tc U A/t U C/Rtc

e Now all link,s true = apply f;
— Chas C/R; UP/R,; UPY/R,, UP:/R,;

April 15,2013 ECS 235B Spring Quarter 2013 Slide #38

Finish Construction

 Now link,1s true = apply f,
— P, has C/R, | UP|/R,,
— P, has C/R,, U P2/R,,
— P; has C/R, ; U P3/R, ,

e 3-parent joint create gives same rights to P,
P,,P,,C

e If create of C fails, link, does not hold, so
construction fails

April 15,2013 ECS 235B Spring Quarter 2013 Slide #39

Theorem

* The two-parent joint creation operation can
implement an n-parent joint creation
operation with a fixed number of additional
types and rights, and augmentations to the
link predicates and filter functions.

* Proof: by construction, as above

— Difference 1s that the two systems need not start
at the same 1nitial state

April 15,2013 ECS 235B Spring Quarter 2013 Slide #40

Theorems

e Monotonic ESPM and the monotonic HRU
model are equivalent.

e Safety question in ESPM also decidable if
acyclic attenuating scheme

— Proof similar to that for SPM

April 15,2013 ECS 235B Spring Quarter 2013 Slide #41

Expressiveness

* Graph-based representation to compare models
 Graph
— Vertex: represents entity, has static type

— Edge: represents right, has static type

e Graph rewriting rules:
— Initial state operations create graph in a particular state
— Node creation operations add nodes, incoming edges

— Edge adding operations add new edges between
existing vertices

April 15,2013 ECS 235B Spring Quarter 2013 Slide #42

Example: 3-Parent Joint Creation

 Simulate with 2-parent
— Nodes P, P,, P, parents
— Create node C with type ¢ with edges of type e

— Add node A, of type a and edge from P, to A,
of type e’

P, O P,

April 15,2013 ECS 235B Spring Quarter 2013 Slide #43

Next Step

e A,,P,create A,; A,, P; create A,

* Type of nodes, edges are a and e~

April 15,2013 ECS 235B Spring Quarter 2013 Slide #44

Next Step

e A; creates S, of type a
e S creates C, of type ¢

April 15,2013 ECS 235B Spring Quarter 2013 Slide #45

Last Step

 Edge adding operations:
— P,—A,—A,—=A;—=S—=C: P, to C edge type e
- P,—A,—A;—=S—=C: P, to C edge type e
— P,—A;—S—C: P, to C edge type ¢

April 15,2013 ECS 235B Spring Quarter 2013 Slide #46

Definitions

e Scheme: graph representation as above
* Model: set of schemes

 Schemes A, B correspond 1t graph for both
1s 1dentical when all nodes with types not in
A and edges with types in A are deleted

April 15,2013 ECS 235B Spring Quarter 2013 Slide #47

Example

* Above 2-parent joint creation simulation in
scheme TWO

 Equivalent to 3-parent joint creation scheme
THREE in which P, P,, P;, C are of same
type as in TWO, and edges from P, P,, P,
to C are of type e, and no types a and e’
exist in TWO

April 15,2013 ECS 235B Spring Quarter 2013 Slide #48

Simulation

Scheme A simulates scheme B iff

e every state B can reach has a corresponding state
in A that A can reach; and

e every state that A can reach either corresponds to a
state B can reach, or has a successor state that
corresponds to a state B can reach

— The last means that A can have intermediate states not
corresponding to states in B, like the intermediate ones
in 7WO 1n the simulation of THREE

April 15,2013 ECS 235B Spring Quarter 2013 Slide #49

