Lecture #7/

e Schematic Protection Model
— Safety question

* Expressive Power
— HRU and SPM

e Multiparent create
— ESPM
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Formal Definition

 Definition: g <, & holds iff for all X, Y € SUB",
fAows(X,Y) C flow"(X,Y).
— Note: if g <, h and h <, g, then g, h equivalent

— Defines set of equivalence classes on set of derivable
states

e Definition: for a given system, state m 1s maximal
ift & <, m tor every derivable state h

e Intuition: flow function contains all tickets that
can be transferred from one subject to another

— All maximal states in same equivalence class
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Maximal States

 Lemma. Given arbitrary finite set of states

H, there exists a derivable state m such that
forallh€E H,h<ym

 Theorem: every system has a maximal state
S
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Satety Question

e In this model:

Is there a derivable state with X/r:c € dom(A),
or does there exist a subject B with ticket X/rc

n t

ne 1nitial state in flow*(B,A)?

e To answer: construct maximal state and test

— Consider acyclic attenuating schemes; how do

W¢e

April 15,2013

construct maximal state?
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Intuition

e Consider state A.

e State u corresponds to 4 but with minimal number
of new entities created such that maximal state m
can be derived with no create operations

— So 1f in history from / to m, subject X creates two
entities of type a, in u only one would be created;
surrogate for both

e m can be derived from u in polynomial time, so if
u can be created by adding a finite number of
subjects to A, safety question decidable.
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Fully Unfolded State

e State u derived from state O as follows:
— delete all loops in cc; new relation cc’
— mark all subjects as folded

— while any X € SUB? is folded

 mark it unfolded

e if X can create entity Y of type y, it does so (call this the y-
surrogate of X); if entity Y € SUBS, mark it folded

— 1f any subject in state 4 can create an entity of its own
type, do so

e Now iIn state u
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Termination

e First loop terminates as SUB finite

e Second loop terminates:

— Each subject in SUB? can create at most | 7S | children,
and | TS | 1s finite

— Each folded subject in | SUB' | can create at most | 7S |
— 1 children

— When i =1| TS |, subject cannot create more children;
thus, folded is finite

— Each loop removes one element
e Third loop terminates as SUB" is finite
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Surrogate

* Intuition: surrogate collapses multiple subjects of

same type into single subject that acts for all of
them

e Definition: given initial state O, for every derivable
state & define surrogate function o:ENT'—ENT"
by:

— if X in ENTY, then o(X) = X
— 1f Y creates X and t©(Y) = 1(X), then o(X) = o(Y)

— 1f Y creates X and t©(Y) # t©(X), then o(X) =t(Y)-
surrogate of o(Y)
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Implications

* t(0(X)) =TtX)
e If t(X) = 1(Y). then o(X) = o(Y)
e If v(X)#1t(Y), then
— 0(X) creates o(Y) 1n the construction of u
— 0(X) creates entities X' of type t©(X) = t(0(X))

* From these, for a system with an acyclic
attenuating scheme, if X creates Y, then tickets
that would be introduced by pretending that o(X)
creates 0(Y) are 1n dom*(o(X)) and dom*(o(Y))
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Deriving Maximal State

e [dea

— Reorder operations so that all creates come first
and replace history with equivalent one using
surrogates

— Show maximal state of new history 1s also that
of original history

— Show maximal state can be derived from initial
state
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Reordering

 H legal history deriving state 4 from state O

e Order operations: first create, then demand, then
COpy operations
* Build new history G from H as follows:

— Delete all creates
— “X demands Y/r:c” becomes “o(X) demands o(Y)/r:c”

— "Y copies X /r:c from Y~ becomes “0(Y) copies
o(X)/r:c from o(Y)
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Tickets 1n Parallel

e Theorem

— All transitions in G legal; if X/r:c € dom"(Y),
then o(X)/r:c € dom"(o(Y))

e Outline of proof: induct on number of copy
operations in H
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Basis

e H has create, demand only; so G has demand only.
O preserves type, so by construction every demand

operation in G legal.
e 3 ways for X/r:c to be in dom"(Y):

— X/r:c € dom®(Y) means X, Y € ENTV, so trivially
o(X)/r:c € dom8(o(Y)) holds

— A create added X/r:c € dom(Y): previous lemma says
o(X)/r:c € dom8(o(Y)) holds

— A demand added X/r:c € dom"(Y): corresponding
demand operation in G gives o(X)/r:.c € doms(o(Y))
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Hypothesis

e Claim holds for all histories with k copy
operations
e History H has k+1 copy operations

— H' initial sequence of H composed of k copy
operations

— h' state derived from H'
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Step

e G’sequence of modified operations
corresponding to H’, g"derived state

— G'legal history by hypothesis
* Final operation is “Z copied X/r:c from Y
— So h, h' differ by at most X/r:c € dom’(Z)
— Construction of G means final operation 1s
o(X)/r:c € doms(o(Y))
* Proves second part of claim
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Step

e H’legal, so for H to be legal, we have:

1. X/rc € dom"(Y)

2. link(Y,Z)

3. w(X/ric) E£((Y), WZ))
e ByIH, 1,2, as X/r:c € dom"(Y),

o(X)/r:c € doms (o(Y)) and link 3 (0(Y), o(Z))
e As o preserves type, IH and 3 imply

T(o(X)/r:c) € f(t((0(Y)), ©(0(Z)))

e IH says G'legal, so G is legal
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Corollary

e If link(X, Y), then link 4(o(X), o(Y))
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Main Theorem

e System has acyclic attenuating scheme

e For every history H deriving state 4 from initial
state, there 1s a history G without create operations
that derives g from the fully unfolded state u such
that

(VXY € SUBM[flow"(X,Y) C flows(c(X), o(Y))]
 Meaning: any history derived from an initial
statecan be simulated by corresponding history
applied to the fully unfolded state derived from the
initial state
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Proof

e Outline of proof: show that every
path’(X,Y) has corresponding path$(o(X),
o0(Y)) such that cap(path(X,Y)) =
cap(path$(o(X), o(Y)))

— Then corresponding sets of tickets flow through
systems derived from H and G

— As 1nitial states correspond, so do those
systems

* Proof by induction on number of links
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Basis and Hypothesis

e Length of path"(X,Y) = 1. By definition of
path”, link(X,Y), hence link#(c(X), o(Y)).
As O preserves type, this means
cap(path"(X,Y)) = cap(path$(o(X), o(Y)))

e Now assume this is true when path"(X,Y)
has length k
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Step

e Let path(X,Y) have length k+1. Then there is a Z
such that path"(X, Z) has length k and link{(Z,Y).

e By IH, there 1s a path8(o(X), 0(Z.)) with same
capacity as path"(X, Z.)
* By corollary, link$(c(Z), o(Y))
* As o preserves type, there 1s path$(o(X), o(Y))
with
cap(path"(X,Y)) = cap(paths(o(X), o(Y)))
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Implication

e Let maximal state corresponding to v be #u
— Deriving history has no creates

— By theorem,
(VX,Y € SUBY[flow"(X,Y) C flow'(5(X), 5(Y))]
_ IfX ESUB, 6(X) = X, s0:
(VX,Y € SUB[flow'(X,Y) C flow" (X, Y)]
e So #u 1s maximal state for system with acyclic attenuating
scheme
— #u derivable from u in time polynomial to ISUB"

— Worst case computation for flow** is exponential in ITS!
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Safety Result

e If the scheme 1s acyclic and attenuating, the
safety question 1s decidable
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Expressive Power

 How do the sets of systems that models can
describe compare’?

— It HRU equivalent to SPM, SPM provides more
specific answer to safety question

— If HRU describes more systems, SPM applies
only to the systems it can describe
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HRU vs. SPM

e SPM more abstract

— Analyses focus on limits of model, not details of
representation

e HRU allows revocation
— SMP has no equivalent to delete, destroy
e HRU allows multiparent creates

— SMP cannot express multiparent creates easily, and not
at all if the parents are of different types because
canecreate allows for only one type of creator
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Multiparent Create

e Solves mutual suspicion problem
— Create proxy jointly, each gives it needed rights

 In HRU:

command multicreate(s,, S;, O)
if r in a[s,, s;] and r in a[s;, S;]
then
create object o;
enter r into a[s,, o];
enter r into al[s;, 0];
end
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SPM and Multiparent Create

e cc extended 1n obvious way
—ccCTSx ... xTSxT

* Symbols
- X, ..., X, parents, Y created
— R, Ry;,R5, Ry ;R
e Rules
— crp (X)), ..., uX)) = Y/R, | UX/R,,
— cre(t(X)), ..., tX))=Y/R; UX|/R,; U...UX /R,
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Example

e Anna, Bill must do something cooperatively
— But they don’ t trust each other

e Jointly create a proxy
— Each gives proxy only necessary rights

e In ESPM:
— Anna, Bill type a; proxy type p; right x € R
— cc(a,a)=p
— cra.(a,a, p)=crgy(a,a,p)=3
(a,a,p)={ Anna/x, Bill/x }

cr proxy
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2-Parent Joint Create Suffices

e Goal: emulate 3-parent joint create with 2-
parent joint create

e Definition of 3-parent joint create (subjects
P,,P,, P;; child C):
—cc(t(P)), t(P,),t(Py) =c & T
— crp (T(P)), ©(P,), ©(P3)) = ¢/R; ; U T(P))/R,
— crpy(T(P)), T(P,), ©(P3)) = ¢/R, ; U T(P,)/R,,
— crps(T(Py), T(P)), T©(P;)) = ¢/R; ) U T(P3)/R, 5
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General Approach

e Define agents for parents and child
— Agents act as surrogates for parents
— If create fails, parents have no extra rights

— If create succeeds, parents, child have exactly
same rights as in 3-parent creates

* Only extra rights are to agents (which are never used
again, and so these rights are irrelevant)
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Entities and Types

e Parents P, P,, P; have types p,, p,, p;
e Child C of type ¢
* Parent agents A, A,, A, of types a,, a,, a,
e Child agent S of type s
 Type t1s parentage
—1f X/t € dom(Y), X 1s Y’s parent
* Typest,a,,a,,a,,s are new types
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CaneCreate

* Following added to canecreate:

April 15

cc(p,) = a,

cc(ps, ay) = a,

e Parents creating their agents; note agents have maximum of 2

parents

cc(as) =s

» Agent of all parents creates agent of child

cc(s)=c

e Agent of child creates child

,2013
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Creation Rules

* Following added to create rule:
- crp(pr,a) =9
— cre(py,ay) =p,/Ric

e Agent’s parent set to creating parent; agent has all rights over
parent

— CTpirg(Py, Ay ) = D
o CrPsecond(pZ’ ap, a2) =

— cre(p,, ay, a,) = p,/Rtc U a,/tc

» Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)
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Creation Rules

— CTpirg(P3, Gy, 3) = O
- CrPsecond(pfS’ ds, 613) =0
— cre(ps, a,, as) = ps/Ric U a,/tc

e Agent’s parent set to creating parent and agent; agent has all
rights over parent (but not over agent)

— crplas, §) =
— crelas, §) = ayltc
e Child’s agent has third agent as parent crp(as, s) =D
— crp(s, c) = C/Rtc
— cr(s, ¢) = c/Ryt

e Child’s agent gets full rights over child; child gets R, rights
over agent
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[.ink Predicates

e Idea: no tickets to parents until child created

— Done by requiring each agent to have its own parent
rights
— link,(A{, A,) = A/t € dom(A,) A A,/t € dom(A,)
— link,(A,, A;) = A,/t € dom(A;) A A/t € dom(A;)
— linky(S, A;) = A/t € dom(S) A C/t € dom(C)
— linky(A,, C) = C/t € dom(A )
— links(A,, C) = C/t € dom(A,)
— linky(A5, C) = C/t € dom(A;)
— link,(A,,P) =P/t dom(A)) A A/t € dom(A,)
— link,(A,,P,) =P,/t € dom(A,) A A,/t € dom(A,)
— link,(A5, Py) = Py/t € dom(A;) A As/t € dom(Aj)
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Filter Functions

* fila,,a,)=a,/t Uc/Rtc

* filas,a,) =a,/t Uc/Rtc

* f5(s,as) =a,/t U c/Ric

* fia;, ¢) =pi/Ry,

* f3(ay,¢) =py/Ry,

* f3(a3,¢) = py/R, 3

* Jdlay,p) =c/R,; Up/R,,
* Jilay, py) = ¢/R, , U py/R;
* falas, p3) = cIR, 3 U p3/Ry
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Construction

Create A, A,, A;, S, C; then

=

; has no relevant tickets

=~

, has no relevant tickets

=

; has no relevant tickets
, has P,/Rtc

, has P,/Rtc U A /tc

; has P;/Rtc U A, /tc

S has A,/tc U C/Rtc

C has C/R,

> > >
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Construction

* Only link,(S, A;) true = apply f,
— A has P;/Rtc U A,/t U A,/t U C/Rtc

 Now link,(A;, A,) true = apply f,
— A, has P,/Rtc U A,/tc U A,/t U C/Rtc

 Now link,(A,, A)) true = apply f,
— A, has P,/Rtc U A,/tc U A/t U C/Rtc

e Now all link,s true = apply f;
— Chas C/R; UP/R,; UPY/R,, UP:/R,;
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Finish Construction

 Now link,1s true = apply f,
— P, has C/R, | UP|/R,,
— P, has C/R,, U P2/R,,
— P; has C/R, ; U P3/R, ,

e 3-parent joint create gives same rights to P,
P,,P,,C

e If create of C fails, link, does not hold, so
construction fails
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Theorem

* The two-parent joint creation operation can
implement an n-parent joint creation
operation with a fixed number of additional
types and rights, and augmentations to the
link predicates and filter functions.

* Proof: by construction, as above

— Difference 1s that the two systems need not start
at the same 1nitial state
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Theorems

e Monotonic ESPM and the monotonic HRU
model are equivalent.

e Safety question in ESPM also decidable if
acyclic attenuating scheme

— Proof similar to that for SPM
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Expressiveness

* Graph-based representation to compare models
 Graph
— Vertex: represents entity, has static type

— Edge: represents right, has static type

e Graph rewriting rules:
— Initial state operations create graph in a particular state
— Node creation operations add nodes, incoming edges

— Edge adding operations add new edges between
existing vertices
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Example: 3-Parent Joint Creation

 Simulate with 2-parent
— Nodes P, P,, P, parents
— Create node C with type ¢ with edges of type e

— Add node A, of type a and edge from P, to A,
of type e’

P, O P,
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Next Step

e A,,P,create A,; A,, P; create A,

* Type of nodes, edges are a and e~
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Next Step

e A; creates S, of type a
e S creates C, of type ¢
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Last Step

 Edge adding operations:
— P,—A,—A,—=A;—=S—=C: P, to C edge type e
- P,—A,—A;—=S—=C: P, to C edge type e
— P,—A;—S—C: P, to C edge type ¢
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Definitions

e Scheme: graph representation as above
* Model: set of schemes

 Schemes A, B correspond 1t graph for both
1s 1dentical when all nodes with types not in
A and edges with types in A are deleted
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Example

* Above 2-parent joint creation simulation in
scheme TWO

 Equivalent to 3-parent joint creation scheme
THREE in which P, P,, P;, C are of same
type as in TWO, and edges from P, P,, P,
to C are of type e, and no types a and e’
exist in TWO
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Simulation

Scheme A simulates scheme B iff

e every state B can reach has a corresponding state
in A that A can reach; and

e every state that A can reach either corresponds to a
state B can reach, or has a successor state that
corresponds to a state B can reach

— The last means that A can have intermediate states not
corresponding to states in B, like the intermediate ones
in 7WO 1n the simulation of THREE
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