Lecture #7

- Schematic Protection Model
 - Safety question
- Expressive Power
 - HRU and SPM
- Multiparent create
 - ESPM

Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $\mathbf{X}, \mathbf{Y} \in SUB^0$, $flow^g(\mathbf{X}, \mathbf{Y}) \subseteq flow^h(\mathbf{X}, \mathbf{Y})$.
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state *m* is maximal iff $h \leq_0 m$ for every derivable state *h*
- Intuition: flow function contains all tickets that can be transferred from one subject to another

– All maximal states in same equivalence class

Maximal States

- Lemma. Given arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$
- Theorem: every system has a maximal state *

Safety Question

• In this model:

Is there a derivable state with $\mathbf{X}/r:c \in dom(\mathbf{A})$, or does there exist a subject **B** with ticket \mathbf{X}/rc in the initial state in *flow**(**B**,**A**)?

- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state *h*.
- State *u* corresponds to *h* but with minimal number of new entities created such that maximal state *m* can be derived with no create operations
 - So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable.

Fully Unfolded State

- State *u* derived from state 0 as follows:
 - delete all loops in cc; new relation cc'
 - mark all subjects as folded
 - while any $\mathbf{X} \in SUB^0$ is folded
 - mark it unfolded
 - if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity Y ∈ SUB^g, mark it folded
 - if any subject in state *h* can create an entity of its own type, do so
- Now in state *u*

Termination

- First loop terminates as *SUB*⁰ finite
- Second loop terminates:
 - Each subject in SUB^0 can create at most | TS | children, and | TS | is finite
 - Each folded subject in $|SUB^i|$ can create at most |TS|- *i* children
 - When i = |TS|, subject cannot create more children; thus, folded is finite
 - Each loop removes one element
- Third loop terminates as *SUB^h* is finite

Surrogate

- Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them
- Definition: given initial state 0, for every derivable state *h* define *surrogate function* $\sigma:ENT^h \rightarrow ENT^h$ by:
 - if **X** in ENT^0 , then $\sigma(\mathbf{X}) = \mathbf{X}$
 - if **Y** creates **X** and $\tau(\mathbf{Y}) = \tau(\mathbf{X})$, then $\sigma(\mathbf{X}) = \sigma(\mathbf{Y})$
 - if **Y** creates **X** and $\tau(\mathbf{Y}) \neq \tau(\mathbf{X})$, then $\sigma(\mathbf{X}) = \tau(\mathbf{Y})$ surrogate of $\sigma(\mathbf{Y})$

Implications

- $\tau(\sigma(\mathbf{X})) = \tau(\mathbf{X})$
- If $\tau(\mathbf{X}) = \tau(\mathbf{Y})$, then $\sigma(\mathbf{X}) = \sigma(\mathbf{Y})$
- If $\tau(\mathbf{X}) \neq \tau(\mathbf{Y})$, then
 - $-\sigma(\mathbf{X})$ creates $\sigma(\mathbf{Y})$ in the construction of *u*
 - $\sigma(\mathbf{X})$ creates entities \mathbf{X}' of type $\tau(\mathbf{X}) = \tau(\sigma(\mathbf{X}))$
- From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that σ(X) creates σ(Y) are in *dom^u*(σ(X)) and *dom^u*(σ(Y))

Deriving Maximal State

- Idea
 - Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 - Show maximal state of new history is also that of original history
 - Show maximal state can be derived from initial state

Reordering

- *H* legal history deriving state *h* from state 0
- Order operations: first create, then demand, then copy operations
- Build new history *G* from *H* as follows:
 - Delete all creates
 - "X demands Y/r:c" becomes " $\sigma(X)$ demands $\sigma(Y)/r:c$ "
 - "Y copies X /r:c from Y" becomes "σ(Y) copies σ(X)/r:c from σ(Y)

Tickets in Parallel

- Theorem
 - All transitions in *G* legal; if $\mathbf{X}/r:c \in dom^h(Y)$, then $\sigma(\mathbf{X})/r:c \in dom^h(\sigma(\mathbf{Y}))$
- Outline of proof: induct on number of copy operations in *H*

Basis

- *H* has create, demand only; so *G* has demand only. σ preserves type, so by construction every demand operation in *G* legal.
- 3 ways for $\mathbf{X}/r:c$ to be in $dom^h(\mathbf{Y})$:
 - $\mathbf{X}/r:c \in dom^0(\mathbf{Y})$ means $\mathbf{X}, \mathbf{Y} \in ENT^0$, so trivially $\sigma(\mathbf{X})/r:c \in dom^g(\sigma(\mathbf{Y}))$ holds
 - A create added $\mathbf{X}/r:c \in dom^h(\mathbf{Y})$: previous lemma says $\sigma(\mathbf{X})/r:c \in dom^g(\sigma(\mathbf{Y}))$ holds
 - A demand added $\mathbf{X}/r:c \in dom^h(\mathbf{Y})$: corresponding demand operation in *G* gives $\sigma(\mathbf{X})/r:c \in dom^g(\sigma(\mathbf{Y}))$

Hypothesis

- Claim holds for all histories with *k* copy operations
- History *H* has *k*+1 copy operations
 - H' initial sequence of H composed of k copy operations
 - -h' state derived from H'

Step

- G' sequence of modified operations corresponding to H'; g' derived state
 G' legal history by hypothesis
- Final operation is "Z copied X/*r*:*c* from Y"
 - So *h*, *h*' differ by at most $\mathbf{X}/r:c \in dom^h(\mathbf{Z})$
 - Construction of *G* means final operation is $\sigma(\mathbf{X})/r:c \in dom^g(\sigma(\mathbf{Y}))$
- Proves second part of claim

Step

- *H'* legal, so for *H* to be legal, we have:
 - 1. $\mathbf{X}/rc \in dom^{h'}(\mathbf{Y})$
 - 2. $link_i^{h'}(\mathbf{Y}, \mathbf{Z})$
 - 3. $\tau(\mathbf{X}/r:c) \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- By IH, 1, 2, as $\mathbf{X}/r:c \in dom^{h'}(\mathbf{Y})$, $\sigma(\mathbf{X})/r:c \in dom^{g'}(\sigma(\mathbf{Y}))$ and $link_i^{g'}(\sigma(\mathbf{Y}), \sigma(\mathbf{Z}))$
- As σ preserves type, IH and 3 imply $\tau(\sigma(\mathbf{X})/r:c) \in f_i(\tau((\sigma(\mathbf{Y})), \tau(\sigma(\mathbf{Z})))$
- IH says G' legal, so G is legal

Corollary

• If $link_i^h(\mathbf{X}, \mathbf{Y})$, then $link_i^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$

Main Theorem

- System has acyclic attenuating scheme
- For every history *H* deriving state *h* from initial state, there is a history *G* without create operations that derives *g* from the fully unfolded state *u* such that

 $(\forall \mathbf{X}, \mathbf{Y} \in SUB^h)[flow^h(\mathbf{X}, \mathbf{Y}) \subseteq flow^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))]$

• Meaning: any history derived from an initial statecan be simulated by corresponding history applied to the fully unfolded state derived from the initial state

Proof

- Outline of proof: show that every *path^h*(**X**,**Y**) has corresponding *path^g*(σ(**X**), σ(**Y**)) such that *cap*(*path^h*(**X**,**Y**)) = *cap*(*path^g*(σ(**X**), σ(**Y**)))
 - Then corresponding sets of tickets flow through systems derived from *H* and *G*
 - As initial states correspond, so do those systems
- Proof by induction on number of links

Basis and Hypothesis

- Length of *path^h*(X, Y) = 1. By definition of *path^h*, *link^h_i*(X, Y), hence *link^g_i*(σ(X), σ(Y)). As σ preserves type, this means
 cap(*path^h*(X, Y)) = *cap*(*path^g*(σ(X), σ(Y)))
- Now assume this is true when *path^h*(X, Y) has length k

Step

- Let *path^h*(X, Y) have length *k*+1. Then there is a Z such that *path^h*(X, Z) has length *k* and *link^h_i*(Z, Y).
- By IH, there is a *path^g*(σ(X), σ(Z)) with same capacity as *path^h*(X, Z)
- By corollary, $link_j^g(\sigma(\mathbf{Z}), \sigma(\mathbf{Y}))$
- As σ preserves type, there is *path^g*(σ(**X**), σ(**Y**)) with

 $cap(path^h(\mathbf{X},\mathbf{Y})) = cap(path^g(\sigma(\mathbf{X}),\sigma(\mathbf{Y})))$

Implication

- Let maximal state corresponding to *v* be #*u*
 - Deriving history has no creates
 - By theorem,

 $(\forall \mathbf{X}, \mathbf{Y} \in SUB^h)[flow^h(\mathbf{X}, \mathbf{Y}) \subseteq flow^{\#u}(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))]$

- If
$$\mathbf{X} \in SUB^0$$
, $\sigma(\mathbf{X}) = \mathbf{X}$, so:

 $(\forall \mathbf{X}, \mathbf{Y} \in SUB^0)[flow^h(\mathbf{X}, \mathbf{Y}) \subseteq flow^{\#u}(\mathbf{X}, \mathbf{Y})]$

- So *#u* is maximal state for system with acyclic attenuating scheme
 - #*u* derivable from *u* in time polynomial to $|SUB^u|$
 - Worst case computation for $flow^{\#u}$ is exponential in |TS|

Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable

Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because *can•create* allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem
 Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate(s_0, s_1, o)
if r in a[s_0, s_1] and r in a[s_1, s_0]
then
```

```
create object o;
enter r into a[s<sub>0</sub>, o];
enter r into a[s<sub>1</sub>, o];
end
```

SPM and Multiparent Create

- *cc* extended in obvious way $- cc \subseteq TS \times ... \times TS \times T$
- Symbols
 - $\mathbf{X}_1, \dots, \mathbf{X}_n$ parents, **Y** created
 - $-R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R$
- Rules

$$- cr_{\mathbf{P},i}(\tau(\mathbf{X}_1), \dots, \tau(\mathbf{X}_n)) = \mathbf{Y}/R_{1,1} \cup \mathbf{X}_i/R_{2,i}$$
$$- cr_{\mathbf{C}}(\tau(\mathbf{X}_1), \dots, \tau(\mathbf{X}_n)) = \mathbf{Y}/R_3 \cup \mathbf{X}_1/R_{4,1} \cup \dots \cup \mathbf{X}_n/R_{4,n}$$

Example

- Anna, Bill must do something cooperatively

 But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type *a*; proxy type *p*; right $x \in R$
 - -cc(a,a) = p
 - $cr_{\text{Anna}}(a, a, p) = cr_{\text{Bill}}(a, a, p) = \emptyset$
 - $cr_{proxy}(a, a, p) = \{ Anna/x, Bill/x \}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2parent joint create
- Definition of 3-parent joint create (subjects P₁, P₂, P₃; child C):

 $- cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c \subseteq T$

- $cr_{\mathbf{P}_{1}}(\tau(\mathbf{P}_{1}), \tau(\mathbf{P}_{2}), \tau(\mathbf{P}_{3})) = c/R_{1,1} \cup \tau(\mathbf{P}_{1})/R_{2,1}$
- $cr_{\mathbf{P}2}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c/R_{2,1} \cup \tau(\mathbf{P}_2)/R_{2,2}$
- $cr_{\mathbf{P}3}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c/R_{3,1} \cup \tau(\mathbf{P}_3)/R_{2,3}$

General Approach

- Define agents for parents and child
 - Agents act as surrogates for parents
 - If create fails, parents have no extra rights
 - If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents $\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3$ have types p_1, p_2, p_3
- Child **C** of type *c*
- Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
- Child agent **S** of type *s*
- Type *t* is parentage $- \text{ if } \mathbf{X}/t \in dom(\mathbf{Y}), \mathbf{X} \text{ is } \mathbf{Y}$'s parent
- Types t, a_1, a_2, a_3, s are new types

Can•Create

- Following added to can•create:
 - $-\operatorname{cc}(p_1) = a_1$
 - $-\operatorname{cc}(p_2, a_1) = a_2$

$$-\operatorname{cc}(p_3, a_2) = a_3$$

- Parents creating their agents; note agents have maximum of 2 parents
- $-\operatorname{cc}(a_3) = s$
 - Agent of all parents creates agent of child
- $-\operatorname{cc}(s) = c$
 - Agent of child creates child

Creation Rules

- Following added to create rule:
 - $cr_P(p_1, a_1) = \emptyset$
 - $cr_C(p_1, a_1) = p_1/Rtc$
 - Agent's parent set to creating parent; agent has all rights over parent
 - $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 - $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 - $cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

-
$$cr_{Pfirst}(p_3, a_2, a_3) = \emptyset$$

- $cr_{Psecond}(p_3, a_2, a_3) = \emptyset$
- $cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$
• Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

$$- cr_P(a_3, s) = \emptyset$$

$$-cr_C(a_3, s) = a_3/tc$$

• Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$

$$- cr_P(s, c) = \mathbf{C}/Rtc$$

$$-cr_C(s,c) = c/R_3t$$

• Child's agent gets full rights over child; child gets R_3 rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights

$$- link_1(\mathbf{A}_1, \mathbf{A}_2) = \mathbf{A}_1/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$$

$$- link_1(\mathbf{A}_2, \mathbf{A}_3) = \mathbf{A}_2/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$$

$$- link_2(\mathbf{S}, \mathbf{A}_3) = \mathbf{A}_3/t \in dom(\mathbf{S}) \land \mathbf{C}/t \in dom(\mathbf{C})$$

$$- link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)$$

$$- link_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$$

$$- link_3(\mathbf{A}_3, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_3)$$

$$- link_4(\mathbf{A}_1, \mathbf{P}_1) = \mathbf{P}_1/t \in dom(\mathbf{A}_1) \land \mathbf{A}_1/t \in dom(\mathbf{A}_1)$$

$$- link_4(\mathbf{A}_2, \mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$$

$$- link_4(\mathbf{A}_3, \mathbf{P}_3) = \mathbf{P}_3/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$$

Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4,2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$

April 15, 2013

Construction

Create A_1, A_2, A_3, S, C ; then

- \mathbf{P}_1 has no relevant tickets
- \mathbf{P}_2 has no relevant tickets
- \mathbf{P}_3 has no relevant tickets
- \mathbf{A}_1 has \mathbf{P}_1/Rtc
- \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc$
- \mathbf{A}_3 has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/tc$
- **S** has $\mathbf{A}_3/tc \cup \mathbf{C}/Rtc$
- C has C/R_3

Construction

- Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2 - \mathbf{A}_3 has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/t \cup \mathbf{A}_3/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1 - \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_2/t \cup \mathbf{C}/Rtc$
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1 - \mathbf{A}_1 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_1/t \cup \mathbf{C}/Rtc$
- Now all $link_3$ s true \Rightarrow apply f_3
 - **C** has $\mathbf{C}/R_3 \cup \mathbf{P}_1/R_{4,1} \cup \mathbf{P}_2/R_{4,2} \cup \mathbf{P}_3/R_{4,3}$

Finish Construction

- Now $link_4$ is true \Rightarrow apply f_4
 - $-\mathbf{P}_1$ has $\mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - \mathbf{P}_2 has $\mathbf{C}/R_{1,2} \cup \mathbf{P}_2/R_{2,2}$
 - $-\mathbf{P}_3$ has $\mathbf{C}/R_{1,3} \cup \mathbf{P}_3/R_{2,3}$
- 3-parent joint create gives same rights to P₁,
 P₂, P₃, C
- If create of **C** fails, *link*₂ does not hold, so construction fails

Theorem

- The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- **Proof**: by construction, as above
 - Difference is that the two systems need not start at the same initial state

Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
 - Proof similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes $\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3$ parents
 - Create node C with type c with edges of type e
 - Add node \mathbf{A}_1 of type *a* and edge from \mathbf{P}_1 to \mathbf{A}_1 of type e'

Next Step

- $\mathbf{A}_1, \mathbf{P}_2$ create $\mathbf{A}_2; \mathbf{A}_2, \mathbf{P}_3$ create \mathbf{A}_3
- Type of nodes, edges are a and e'

Next Step

- A₃ creates **S**, of type *a*
- S creates C, of type c

Last Step

Definitions

- *Scheme*: graph representation as above
- *Model*: set of schemes
- Schemes *A*, *B correspond* if graph for both is identical when all nodes with types not in *A* and edges with types in *A* are deleted

Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme *THREE* in which P₁, P₂, P₃, C are of same type as in *TWO*, and edges from P₁, P₂, P₃ to C are of type *e*, and no types *a* and *e* exist in *TWO*

Simulation

Scheme A simulates scheme B iff

- every state *B* can reach has a corresponding state in *A* that *A* can reach; and
- every state that *A* can reach either corresponds to a state *B* can reach, or has a successor state that corresponds to a state *B* can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE