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Lecture #7	


•  Schematic Protection Model	



–  Safety question	


•  Expressive Power	



–  HRU and SPM	



•  Multiparent create	


– ESPM	
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Formal Definition	


•  Definition: g ≤0 h holds iff for all X, Y ∈ SUB0, 

flowg(X,Y) ⊆ flowh(X,Y).	


–  Note: if g ≤0 h and h ≤0 g, then g, h equivalent	


–  Defines set of equivalence classes on set of derivable 

states	


•  Definition: for a given system, state m is maximal 

iff h ≤0 m for every derivable state h	


•  Intuition: flow function contains all tickets that 

can be transferred from one subject to another	


–  All maximal states in same equivalence class	
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Maximal States	



•  Lemma. Given arbitrary finite set of states 
H, there exists a derivable state m such that 
for all h ∈ H, h ≤0 m	



•  Theorem: every system has a maximal state 
*	
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Safety Question	



•  In this model:	


	

Is there a derivable state with X/r:c ∈ dom(A), 
or does there exist a subject B with ticket X/rc 
in the initial state in flow*(B,A)?	



•  To answer: construct maximal state and test	


– Consider acyclic attenuating schemes; how do 

we construct maximal state?	
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Intuition	


•  Consider state h.	


•  State u corresponds to h but with minimal number 

of new entities created such that maximal state m 
can be derived with no create operations	


–  So if in history from h to m, subject X creates two 

entities of type a, in u only one would be created; 
surrogate for both	



•  m can be derived from u in polynomial time, so if 
u can be created by adding a finite number of 
subjects to h, safety question decidable.	
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Fully Unfolded State	


•  State u derived from state 0 as follows:	



–  delete all loops in cc; new relation ccʹ′	


–  mark all subjects as folded	


–  while any X ∈ SUB0 is folded	



•  mark it unfolded	


•  if X can create entity Y of type y, it does so (call this the y-

surrogate of X); if entity Y ∈ SUBg, mark it folded	


–  if any subject in state h can create an entity of its own 

type, do so	


•  Now in state u	
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Termination	


•  First loop terminates as SUB0 finite	


•  Second loop terminates:	



–  Each subject in SUB0 can create at most | TS | children, 
and | TS | is finite	



–  Each folded subject in | SUBi | can create at most | TS | 
– i children	



–  When i = | TS |, subject cannot create more children; 
thus, folded is finite	



–  Each loop removes one element	


•  Third loop terminates as SUBh is finite	
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Surrogate	


•  Intuition: surrogate collapses multiple subjects of 

same type into single subject that acts for all of 
them	



•  Definition: given initial state 0, for every derivable 
state h define surrogate function σ:ENTh→ENTh 
by:	


–  if X in ENT0, then σ(X) = X	


–  if Y creates X and τ(Y) = τ(X), then σ(X) = σ(Y)	


–  if Y creates X and τ(Y) ≠ τ(X), then σ(X) = τ(Y)-

surrogate of σ(Y)	
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Implications	


•  τ(σ(X)) = τ(X)	


•  If τ(X) = τ(Y), then σ(X) = σ(Y)	


•  If τ(X) ≠ τ(Y), then	



–  σ(X) creates σ(Y) in the construction of u	


–  σ(X) creates entities Xʹ′ of type τ(X) = τ(σ(X))	



•  From these, for a system with an acyclic 
attenuating scheme, if X creates Y, then tickets 
that would be introduced by pretending that σ(X) 
creates σ(Y) are in domu(σ(X)) and domu(σ(Y))	
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Deriving Maximal State	



•  Idea	


– Reorder operations so that all creates come first 

and replace history with equivalent one using 
surrogates	



– Show maximal state of new history is also that 
of original history	



– Show maximal state can be derived from initial 
state	
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Reordering	



•  H legal history deriving state h from state 0	


•  Order operations: first create, then demand, then 

copy operations	


•  Build new history G from H as follows:	



–  Delete all creates	


–  “X demands Y/r:c” becomes “σ(X) demands σ(Y)/r:c”	


–  “Y copies X /r:c from Y” becomes “σ(Y) copies          
σ(X)/r:c from σ(Y)	
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Tickets in Parallel	



•  Theorem	


– All transitions in G legal; if X/r:c ∈ domh(Y), 

then σ(X)/r:c ∈ domh(σ(Y))	


•  Outline of proof: induct on number of copy 

operations in H	
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Basis	


•  H has create, demand only; so G has demand only. 
σ preserves type, so by construction every demand 
operation in G legal.	



•  3 ways for X/r:c to be in domh(Y):	


–  X/r:c ∈ dom0(Y) means X, Y ∈ ENT0, so trivially        
σ(X)/r:c ∈ domg(σ(Y)) holds	



–  A create added X/r:c ∈ domh(Y): previous lemma says 
σ(X)/r:c ∈ domg(σ(Y)) holds	



–  A demand added X/r:c ∈ domh(Y): corresponding 
demand operation in G gives σ(X)/r:c ∈ domg(σ(Y))	
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Hypothesis	



•  Claim holds for all histories with k copy 
operations	



•  History H has k+1 copy operations	


– Hʹ′ initial sequence of H composed of k copy 

operations	


–  hʹ′ state derived from Hʹ′	



Slide #14	





April 15, 2013	

 ECS 235B Spring Quarter 2013	



Step	



•  Gʹ′ sequence of modified operations 
corresponding to Hʹ′; gʹ′ derived state	


– Gʹ′ legal history by hypothesis	



•  Final operation is “Z copied X/r:c from Y”	


– So h, hʹ′ differ by at most X/r:c ∈ domh(Z)	


– Construction of G means final operation is	


	

σ(X)/r:c ∈ domg(σ(Y))	



•  Proves second part of claim	
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Step	


•  Hʹ′ legal, so for H to be legal, we have:	



1.   X/rc ∈ domhʹ′(Y)	


2.   linki

hʹ′(Y, Z)	


3.   τ(X/r:c) ∈ fi(τ(Y), τ(Z))	



•  By IH, 1, 2, as X/r:c ∈ domhʹ′(Y),	


	

σ(X)/r:c ∈ domgʹ′ (σ(Y)) and linki

gʹ′(σ(Y), σ(Z))	


•  As σ preserves type, IH and 3 imply	



τ(σ(X)/r:c) ∈ fi(τ((σ(Y)), τ(σ(Z)))	


•  IH says Gʹ′ legal, so G is legal	
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Corollary	



•  If linki
h(X, Y), then linki

g(σ(X), σ(Y))	
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Main Theorem	


•  System has acyclic attenuating scheme	


•  For every history H deriving state h from initial 

state, there is a history G without create operations 
that derives g from the fully unfolded state u such 
that	



(∀X,Y ∈ SUBh)[flowh(X, Y) ⊆ flowg(σ(X), σ(Y))]	


•  Meaning: any history derived from an initial 

statecan be simulated by corresponding history 
applied to the fully unfolded state derived from the 
initial state	
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Proof	



•  Outline of proof: show that every 
pathh(X,Y) has corresponding pathg(σ(X), 
σ(Y)) such that cap(pathh(X,Y)) = 
cap(pathg(σ(X), σ(Y)))	


– Then corresponding sets of tickets flow through 

systems derived from H and G	


– As initial states correspond, so do those 

systems	


•  Proof by induction on number of links	
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Basis and Hypothesis	



•  Length of pathh(X, Y) = 1. By definition of 
pathh, linki

h(X, Y), hence linki
g(σ(X), σ(Y)). 

As σ preserves type, this means	


cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)))	



•  Now assume this is true when pathh(X, Y) 
has length k	
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Step	



•  Let pathh(X, Y) have length k+1. Then there is a Z 
such that pathh(X, Z) has length k and linkj

h(Z, Y).	


•  By IH, there is a pathg(σ(X), σ(Z)) with same 

capacity as pathh(X, Z)	


•  By corollary, linkj

g(σ(Z), σ(Y))	


•  As σ preserves type, there is pathg(σ(X), σ(Y)) 

with	


cap(pathh(X, Y)) = cap(pathg(σ(X), σ(Y)))	
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Implication	



•  Let maximal state corresponding to v be #u	


–  Deriving history has no creates	


–  By theorem,	



(∀X,Y ∈ SUBh)[flowh(X, Y) ⊆ flow#u(σ(X), σ(Y))]	


–  If X ∈ SUB0, σ(X) = X, so:	



(∀X,Y ∈ SUB0)[flowh(X, Y) ⊆ flow#u(X, Y)]	



•  So #u is maximal state for system with acyclic attenuating 
scheme	


–  #u derivable from u in time polynomial to |SUBu|	


–  Worst case computation for flow#u is exponential in |TS|	



Slide #22	





April 15, 2013	

 ECS 235B Spring Quarter 2013	



Safety Result	



•  If the scheme is acyclic and attenuating, the 
safety question is decidable	
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Expressive Power	



•  How do the sets of systems that models can 
describe compare?	


–  If HRU equivalent to SPM, SPM provides more 

specific answer to safety question	


–  If HRU describes more systems, SPM applies 

only to the systems it can describe	
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HRU vs. SPM	



•  SPM more abstract 	


–  Analyses focus on limits of model, not details of 

representation	


•  HRU allows revocation	



–  SMP has no equivalent to delete, destroy	


•  HRU allows multiparent creates	



–  SMP cannot express multiparent creates easily, and not 
at all if the parents are of different types because 
can•create allows for only one type of creator	
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Multiparent Create	



•  Solves mutual suspicion problem	


– Create proxy jointly, each gives it needed rights	



•  In HRU:	


command multicreate(s0, s1, o)!
if r in a[s0, s1] and r in a[s1, s0]!
then!
!create object o;!
!enter r into a[s0, o];!
!enter r into a[s1, o];!
end!
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SPM and Multiparent Create	



•  cc extended in obvious way	


–  cc ⊆ TS × … × TS × T	



•  Symbols	


–  X1, …, Xn parents, Y created	


–  R1,i, R2,i, R3, R4,i ⊆ R	



•  Rules	


–  crP,i(τ(X1), …, τ(Xn)) = Y/R1,1 ∪ Xi/R2,i	


–  crC(τ(X1), …, τ(Xn)) = Y/R3 ∪ X1/R4,1 ∪ … ∪ Xn/R4,n	
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Example	


•  Anna, Bill must do something cooperatively	



–  But they don’t trust each other	


•  Jointly create a proxy	



–  Each gives proxy only necessary rights	


•  In ESPM:	



–  Anna, Bill type a; proxy type p; right x ∈ R	


–  cc(a, a) = p	


–  crAnna(a, a, p) = crBill(a, a, p) = ∅	


–  crproxy(a, a, p) = { Anna/x, Bill/x }	



Slide #28	





April 15, 2013	

 ECS 235B Spring Quarter 2013	



2-Parent Joint Create Suffices	



•  Goal: emulate 3-parent joint create with 2-
parent joint create	



•  Definition of 3-parent joint create (subjects 
P1, P2, P3; child C):	


–  cc(τ(P1), τ(P2), τ(P3)) = c ⊆ T	


–  crP1(τ(P1), τ(P2), τ(P3)) = c/R1,1 ∪ τ(P1)/R2,1	


–  crP2(τ(P1), τ(P2), τ(P3)) = c/R2,1 ∪ τ(P2)/R2,2	


–  crP3(τ(P1), τ(P2), τ(P3)) = c/R3,1 ∪ τ(P3)/R2,3	
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General Approach	



•  Define agents for parents and child	


– Agents act as surrogates for parents	


–  If create fails, parents have no extra rights	


–  If create succeeds, parents, child have exactly 

same rights as in 3-parent creates	


•  Only extra rights are to agents (which are never used 

again, and so these rights are irrelevant)	



Slide #30	





April 15, 2013	

 ECS 235B Spring Quarter 2013	



Entities and Types	



•  Parents P1, P2, P3 have types p1, p2, p3	


•  Child C of type c	


•  Parent agents A1, A2, A3 of types a1, a2, a3	


•  Child agent S of type s	


•  Type t is parentage	



–  if X/t ∈ dom(Y), X is Y’s parent	


•  Types t, a1, a2, a3, s are new types	
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Can•Create	



•  Following added to can•create:	


–  cc(p1) = a1	


–  cc(p2, a1) = a2	


–  cc(p3, a2) = a3	



•  Parents creating their agents; note agents have maximum of 2 
parents	



–  cc(a3) = s	


•  Agent of all parents creates agent of child	



–  cc(s) = c	


•  Agent of child creates child	
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Creation Rules	



•  Following added to create rule:	


–  crP(p1, a1) = ∅	


–  crC(p1, a1) = p1/Rtc	



•  Agent’s parent set to creating parent; agent has all rights over 
parent	



–  crPfirst(p2, a1, a2) = ∅	


–  crPsecond(p2, a1, a2) = ∅	


–  crC(p2, a1, a2) = p2/Rtc ∪ a1/tc	



•  Agent’s parent set to creating parent and agent; agent has all 
rights over parent (but not over agent)	
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Creation Rules	


–  crPfirst(p3, a2, a3) = ∅	


–  crPsecond(p3, a2, a3) = ∅	


–  crC(p3, a2, a3) = p3/Rtc ∪ a2/tc	



•  Agent’s parent set to creating parent and agent; agent has all 
rights over parent (but not over agent)	



–  crP(a3, s) = ∅	


–  crC(a3, s) = a3/tc	



•  Child’s agent has third agent as parent crP(a3, s) = ∅	


–  crP(s, c) = C/Rtc	


–  crC(s, c) = c/R3t	



•  Child’s agent gets full rights over child; child gets R3 rights 
over agent	
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Link Predicates	


•  Idea: no tickets to parents until child created	



–  Done by requiring each agent to have its own parent 
rights	



–  link1(A1, A2) = A1/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)	


–  link1(A2, A3) = A2/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)	


–  link2(S, A3) = A3/t ∈ dom(S) ∧ C/t ∈ dom(C)	


–  link3(A1, C) = C/t ∈ dom(A1)	


–  link3(A2, C) = C/t ∈ dom(A2)	


–  link3(A3, C) = C/t ∈ dom(A3)	


–  link4(A1, P1) = P1/t ∈ dom(A1) ∧ A1/t ∈ dom(A1)	


–  link4(A2, P2) = P2/t ∈ dom(A2) ∧ A2/t ∈ dom(A2)	


–  link4(A3, P3) = P3/t ∈ dom(A3) ∧ A3/t ∈ dom(A3)	
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Filter Functions	


•  f1(a2, a1) = a1/t ∪ c/Rtc	


•  f1(a3, a2) = a2/t ∪ c/Rtc	


•  f2(s, a3) = a3/t ∪ c/Rtc	


•  f3(a1, c) = p1/R4,1	


•  f3(a2, c) = p2/R4,2	


•  f3(a3, c) = p3/R4,3	


•  f4(a1, p1) = c/R1,1 ∪ p1/R2,1	


•  f4(a2, p2) = c/R1,2 ∪ p2/R2,2	


•  f4(a3, p3) = c/R1,3 ∪ p3/R2,3	
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Construction	


Create A1, A2, A3, S, C; then	


•  P1 has no relevant tickets	


•  P2 has no relevant tickets	


•  P3 has no relevant tickets	


•  A1 has P1/Rtc	


•  A2 has P2/Rtc ∪ A1/tc	


•  A3 has P3/Rtc ∪ A2/tc	


•  S has A3/tc ∪ C/Rtc	


•  C has C/R3	
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Construction	


•  Only link2(S, A3) true ⇒ apply f2	



–  A3 has P3/Rtc ∪ A2/t ∪ A3/t ∪ C/Rtc	


•  Now link1(A3, A2) true ⇒ apply f1	



–  A2 has P2/Rtc ∪ A1/tc ∪ A2/t ∪ C/Rtc	


•  Now link1(A2, A1) true ⇒ apply f1	



–  A1 has P2/Rtc ∪ A1/tc ∪ A1/t ∪ C/Rtc	


•  Now all link3s true ⇒ apply f3	



–  C has C/R3 ∪ P1/R4,1 ∪ P2/R4,2 ∪ P3/R4,3	



Slide #38	





April 15, 2013	

 ECS 235B Spring Quarter 2013	



Finish Construction	



•  Now link4 is true ⇒ apply f4	


– P1 has C/R1,1 ∪ P1/R2,1	


– P2 has C/R1,2 ∪ P2/R2,2	


– P3 has C/R1,3 ∪ P3/R2,3	



•  3-parent joint create gives same rights to P1, 
P2, P3, C	



•  If create of C fails, link2 does not hold, so 
construction fails	
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Theorem	



•  The two-parent joint creation operation can 
implement an n-parent joint creation 
operation with a fixed number of additional 
types and rights, and augmentations to the 
link predicates and filter functions.	



•  Proof: by construction, as above	


– Difference is that the two systems need not start 

at the same initial state	
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Theorems	



•  Monotonic ESPM and the monotonic HRU 
model are equivalent.	



•  Safety question in ESPM also decidable if 
acyclic attenuating scheme	


– Proof similar to that for SPM	
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Expressiveness	



•  Graph-based representation to compare models	


•  Graph	



–  Vertex: represents entity, has static type	


–  Edge: represents right, has static type	



•  Graph rewriting rules:	


–  Initial state operations create graph in a particular state	


–  Node creation operations add nodes, incoming edges	


–  Edge adding operations add new edges between 

existing vertices	


ECS 235B Spring Quarter 2013	
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Example: 3-Parent Joint Creation	



•  Simulate with 2-parent	


– Nodes P1, P2, P3 parents	


– Create node C with type c with edges of type e	


– Add node A1 of type a and edge from P1 to A1 

of type e´	



P2	

 P3	

P1	



A1	



Slide #43	





April 15, 2013	

 ECS 235B Spring Quarter 2013	



Next Step	



•  A1, P2 create A2; A2, P3 create A3	


•  Type of nodes, edges are a and e´	



P2	

 P3	

P1	



A1	

 A2	


A3	
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Next Step	



•  A3 creates S, of type a	


•  S creates C, of type c	



S	

C	



P2	

 P3	

P1	



A1	

 A2	


A3	
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Last Step	



•  Edge adding operations:	


– P1→A1→A2→A3→S→C: P1 to C edge type e	


– P2→A2→A3→S→C: P2 to C edge type e	


– P3→A3→S→C: P3 to C edge type e	



S	



C	



P2	

 P3	

P1	



A1	


A2	



A3	
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Definitions	



•  Scheme: graph representation as above	


•  Model: set of schemes	


•  Schemes A, B correspond if graph for both 

is identical when all nodes with types not in 
A and edges with types in A are deleted	
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Example	



•  Above 2-parent joint creation simulation in 
scheme TWO	



•  Equivalent to 3-parent joint creation scheme 
THREE in which P1, P2, P3, C are of same 
type as in TWO, and edges from P1, P2, P3 
to C are of type e, and no types a and e´ 
exist in TWO	
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Simulation	



Scheme A simulates scheme B iff	


•  every state B can reach has a corresponding state 

in A that A can reach; and	


•  every state that A can reach either corresponds to a 

state B can reach, or has a successor state that 
corresponds to a state B can reach	


–  The last means that A can have intermediate states not 

corresponding to states in B, like the intermediate ones 
in TWO in the simulation of THREE	
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