
April 17, 2013	
 ECS 235B Spring Quarter 2013	

Lecture #8	

•  Multiparent create	

•  Expressive power	

•  Typed Access Control Matrix (TAM)	

•  Overview of Policies	

•  The nature of policies	

– What they cover	

Slide #1	

Expressiveness	

•  Graph-based representation to compare models	

•  Graph	

–  Vertex: represents entity, has static type	

–  Edge: represents right, has static type	

•  Graph rewriting rules:	

–  Initial state operations create graph in a particular state	

–  Node creation operations add nodes, incoming edges	

–  Edge adding operations add new edges between

existing vertices	

ECS 235B Spring Quarter 2013	
April 17, 2013	
 Slide #2	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Example: 3-Parent Joint Creation	

•  Simulate with 2-parent	

– Nodes P1, P2, P3 parents	

– Create node C with type c with edges of type e	

– Add node A1 of type a and edge from P1 to A1

of type e´	

P2	
 P3	
P1	

A1	

Slide #3	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Next Step	

•  A1, P2 create A2; A2, P3 create A3	

•  Type of nodes, edges are a and e´	

P2	
 P3	
P1	

A1	
 A2	

A3	

Slide #4	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Next Step	

•  A3 creates S, of type a	

•  S creates C, of type c	

S	
C	

P2	
 P3	
P1	

A1	
 A2	

A3	

Slide #5	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Last Step	

•  Edge adding operations:	

– P1→A1→A2→A3→S→C: P1 to C edge type e	

– P2→A2→A3→S→C: P2 to C edge type e	

– P3→A3→S→C: P3 to C edge type e	

S	

C	

P2	
 P3	
P1	

A1	

A2	

A3	

Slide #6	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Definitions	

•  Scheme: graph representation as above	

•  Model: set of schemes	

•  Schemes A, B correspond if graph for both

is identical when all nodes with types not in
A and edges with types in A are deleted	

Slide #7	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  Above 2-parent joint creation simulation in
scheme TWO	

•  Equivalent to 3-parent joint creation scheme
THREE in which P1, P2, P3, C are of same
type as in TWO, and edges from P1, P2, P3
to C are of type e, and no types a and e´
exist in TWO	

Slide #8	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Simulation	

Scheme A simulates scheme B iff	

•  every state B can reach has a corresponding state

in A that A can reach; and	

•  every state that A can reach either corresponds to a

state B can reach, or has a successor state that
corresponds to a state B can reach	

–  The last means that A can have intermediate states not

corresponding to states in B, like the intermediate ones
in TWO in the simulation of THREE	

Slide #9	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Expressive Power	

•  If there is a scheme in MA that no scheme in
MB can simulate, MB less expressive than
MA	

•  If every scheme in MA can be simulated by
a scheme in MB, MB as expressive as MA	

•  If MA as expressive as MB and vice versa,
MA and MB equivalent	

Slide #10	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  Scheme A in model M	

–  Nodes X1, X2, X3	

–  2-parent joint create	

–  1 node type, 1 edge type	

–  No edge adding operations	

–  Initial state: X1, X2, X3, no edges	

•  Scheme B in model N	

–  All same as A except no 2-parent joint create	

–  1-parent create	

•  Which is more expressive?	

Slide #11	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Can A Simulate B?	

•  Scheme A simulates 1-parent create: have
both parents be same node	

– Model M as expressive as model N	

Slide #12	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Can B Simulate A?	

•  Suppose X1, X2 jointly create Y in A	

– Edges from X1, X2 to Y, no edge from X3 to Y	

•  Can B simulate this?	

– Without loss of generality, X1 creates Y	

– Must have edge adding operation to add edge

from X2 to Y	

– One type of node, one type of edge, so

operation can add edge between any 2 nodes	

Slide #13	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

No	

•  All nodes in A have even number of incoming

edges	

–  2-parent create adds 2 incoming edges	

•  Edge adding operation in B that can edge from X2
to C can add one from X3 to C	

–  A cannot enter this state 	

•  A, cannot have node (C) with 3 incoming edges	

–  B cannot transition to a state in which Y has even

number of incoming edges	

•  No remove rule	

•  So B cannot simulate A; N less expressive than M	

Slide #14	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Theorem	

•  Monotonic single-parent models are less
expressive than monotonic multiparent models	

•  Proof by contradiction	

–  Scheme A is multiparent model	

–  Scheme B is single parent create	

–  Claim: B can simulate A, without assumption that they

start in the same initial state	

•  Note: example assumed same initial state	

Slide #15	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Outline of Proof	

•  X1, X2 nodes in A	

–  They create Y1, Y2, Y3 using multiparent create rule	

–  Y1, Y2 create Z, again using multiparent create rule	

–  Note: no edge from Y3 to Z can be added, as A has no edge-adding

operation	

X1	

X2	

Y1	

Y3	

Y2	
 Z	

Slide #16	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Outline of Proof	

•  W, X1, X2 nodes in B	

–  W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to
all using edge adding rule	

–  Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z
to simulate A	

–  Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in
scheme A!	

X1	

X2	

Y1	

Y3	

Y2	
 Z	

Slide #17	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Meaning	

•  Scheme B cannot simulate scheme A,
contradicting hypothesis	

•  ESPM more expressive than SPM	

– ESPM multiparent and monotonic	

– SPM monotonic but single parent	

Slide #18	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Typed Access Matrix Model	

•  Like ACM, but with set of types T	

– All subjects, objects have types	

– Set of types for subjects TS	

•  Protection state is (S, O, τ, A)	

–  τ: O→T specifies type of each object	

–  If X subject, τ(X) ∈ TS	

–  If X object, τ(X) ∈ T – TS	

Slide #19	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Create Rules	

•  Subject creation	

–  create subject s of type ts	

–  s must not exist as subject or object when operation

executed	

–  ts ∈ TS	

•  Object creation	

–  create object o of type to	

–  o must not exist as subject or object when operation

executed	

–  to ∈ T – TS	

Slide #20	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Create Subject	

•  Precondition: s ∉ S	

•  Primitive command: create subject s of

type t	

•  Postconditions:	

–  S´ = S ∪{ s }, O´ = O ∪{ s }	

–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t	

–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]	

–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]	

Slide #21	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Create Object	

•  Precondition: o ∉ O	

•  Primitive command: create object o of type

t	

•  Postconditions:	

–  S´ = S, O´ = O ∪ { o }	

–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t	

–  (∀x ∈ S´)[a´[x, o] = ∅]	

–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]	

Slide #22	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Definitions	

•  MTAM Model: TAM model without delete,
destroy	

– MTAM is Monotonic TAM	

•  α(x1:t1, ..., xn:tn) create command	

–  ti child type in α if any of create subject xi of

type ti or create object xi of type ti occur in α	

–  ti parent type otherwise	

Slide #23	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Cyclic Creates	

command havoc(s : u, p : u, f : v, q : w)	

	
create subject p of type u;	

	
create object f of type v;	

	
enter own into a[s, p];	

	
enter r into a[q, p];	

	
enter own into a[p, f];	

	
enter r into a[p, f]	

end	

Slide #24	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Creation Graph	

•  u, v child types	

•  u, w parent types	

•  Graph: lines from

parent types to child
types	

•  This one has cycles	

u	

v	
 w	

Slide #25	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Acyclic Creates	

command havoc(s : u, p : u, f : v, q : w)	

	
create object f of type v;	

	
enter own into a[s, p];	

	
enter r into a[q, p];	

	
enter own into a[p, f];	

	
enter r into a[p, f]	

end	

Slide #26	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Creation Graph	

•  v child type	

•  u, w parent types	

•  Graph: lines from

parent types to child
types	

•  This one has no cycles	

u	

v	
 w	

Slide #27	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Theorems	

•  Safety decidable for systems with acyclic MTAM
schemes	

–  In fact, it’s NP-hard	

•  Safety for acyclic ternary MATM decidable in
time polynomial in the size of initial ACM	

–  “Ternary” means commands have no more than 3

parameters	

–  Equivalent in expressive power to MTAM	

Slide #28	

Comparing Security Properties	

•  Generalize what we have done earlier	

– Property we looked at is safety question	

– Others of interest are bounds on determining

safety, what actions a specific subject can take,
etc.	

•  Also eliminate the requirement of
monotonicity	

•  Key idea: access requests are queries	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #29	

Scheme (Alternate Definition)	

Σ set of states	

Q set of querties	

e: Σ × Q → { true, false } (entailment

relation)	

Τ set of transition rules	

Access control scheme is (Σ, Q, e, T)	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #30	

Note	

•  We write σ ⊢τ σ′for τ changing the system
from state σ to state σ′	

•  We write σ ↦τ σ′ for τ allowing the system
to change from state σ to state σ′	

–  It doesn’t actually change the state	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #31	

Example: Take-Grant	

•  Σ set of all possible protection graphs	

•  Q set of queries	

	
{ can•share(α, v1, v2, G0) }	

•  e: e(σ0, q) = true if q holds; false if not	

•  Τ set of sequences of take, grant, create,

remove rules	

So take-grant is an access control scheme	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #32	

Security Analysis Instance	

•  (Σ, Q, e, T) access control scheme	

•  Security analysis instance is (σ, q, τ, Π) where:	

–  σ ∈ Σ, q ∈ Q, τ ∈ T	

– Π is ∀ or ∃	

•  Π is∃: does there exist a state σ′ such that σ
↦* σ′ and e(σ′, q) = true	

•  Π is ∀: for all states σ′ such that σ ↦* σ′, is
e(σ′, q) = true	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #33	

Multiple Queries	

•  (Σ, Q, e, T) access control scheme	

•  Compositional security analysis instance is

(σ, ϕ, τ, Π) where ϕ is a propositional
logic formula of queries from Q	

	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #34	

Mapping from A to B	

•  A mapping from A = (ΣA, QA, eA, TA) to B =
(ΣB, QB, eB, TB) is a function	

	
f : (ΣA × TA) ∪ QA (ΣB × TB) ∪ QB	

•  Idea:	

– Each query in A corresponds to one in B	

– Each state, transition pair in A corresponds to a

pair in B	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #35	

Security-Preserving Mappings	

•  f : A → B	

•  Image of a security analysis instance (σA,

qA, τA, Π) under f is (σB, qB, τB, Π), where:	

–  f((σA, τA)) = (σB, τB) and f(qA) = qB	

•  f is security-preserving if every security
analysis instance in A is true iff its image in
B is true	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #36	

Strongly Security-Preserving	

•  Like security-preserving, but for
compositional security analyses instances	

•  That is, for the image, instead of f(qA) = qB
we have f(ϕA) = ϕB	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #37	

Two Mapped Models	

•  Consider access control schemes A and B
with a mapping f : A → B	

•  Security properties deal with answers to
queries about states and transitions	

•  Given 2 corresponding states and 2
corresponding sequences of transitions,
corresponding queries must give same
answer!	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #38	

Equivalent Under Mapping	

•  A = (ΣA, QA, eA, TA)	

•  B = (ΣB, QB, eB, TB)	

•  f : A → B	

•  σA, σB equivalent under mapping f when

eA(σA, qA) = eB(σB, qB)	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #39	

State-Matching Reduction	

•  f is state-matching reduction if, for every
σA ∈ ΣA and τA ∈ TA, (σB, τB) = f((σA, τA))
has the following properties:	

– ∀(σ′A ∈ ΣA) such that σA ↦τ* σ′A, there is a

state σ′B ∈ ΣB such that σB ↦τ* σ′B, and σ′A
and σ′B are equivalent under the mapping f	

– ∀(σ′B ∈ ΣB) such that σB ↦τ* σ′B, there is a
state σ′A ∈ ΣA such that σA ↦τ* σ′A, and σ′A
and σ′B are equivalent under the mapping f	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #40	

Theorem	

•  A mapping f : A → B is strongly security-
preserving iff f is a state-matching reduction	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #41	

Expressive Power	

If access control model MA has a scheme that cannot
be mapped into a scheme in access control model MB
using a state-matching reduction, then model MB is
less expressive than model MA. If every scheme in
model MA can be mapped into a scheme in model MB
using a state-matching reduction, then model MB is as
expressive as model MA. If MA is as expressive as MB,
and MB is as expressive as MA, the models are
equivalent.	

•  Note it does not require schemes to be monotonic!	

April 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #42	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Security Policies	

•  Overview	

•  The nature of policies	

–  What they cover	

–  Policy languages	

•  The nature of mechanisms	

–  Types	

–  Secure vs. precise	

•  Underlying both	

–  Trust	

Slide #43	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Overview	

•  Policies	

•  Trust	

•  Nature of Security Mechanisms	

•  Policy Expression Languages	

•  Limits on Secure and Precise Mechanisms	

Slide #44	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Security Policy	

•  Policy partitions system states into:	

– Authorized (secure)	

•  These are states the system can enter	

– Unauthorized (nonsecure)	

•  If the system enters any of these states, it’s a
security violation	

•  Secure system	

– Starts in authorized state	

– Never enters unauthorized state	

Slide #45	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Confidentiality	

•  X set of entities, I information	

•  I has confidentiality property with respect to X if

no x ∈ X can obtain information from I	

•  I can be disclosed to others	

•  Example:	

–  X set of students	

–  I final exam answer key	

–  I is confidential with respect to X if students cannot

obtain final exam answer key	

Slide #46	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Integrity	

•  X set of entities, I information	

•  I has integrity property with respect to X if all x ∈

X trust information in I	

•  Types of integrity:	

–  trust I, its conveyance and protection (data integrity)	

–  I information about origin of something or an identity

(origin integrity, authentication)	

–  I resource: means resource functions as it should

(assurance)	

Slide #47	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Availability	

•  X set of entities, I resource	

•  I has availability property with respect to X if all x
∈ X can access I	

•  Types of availability:	

–  traditional: x gets access or not	

–  quality of service: promised a level of access (for

example, a specific level of bandwidth) and not meet it,
even though some access is achieved	

Slide #48	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Policy Models	

•  Abstract description of a policy or class of
policies	

•  Focus on points of interest in policies	

– Security levels in multilevel security models	

– Separation of duty in Clark-Wilson model	

– Conflict of interest in Chinese Wall model	

Slide #49	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Types of Security Policies	

•  Military (governmental) security policy	

– Policy primarily protecting confidentiality	

•  Commercial security policy	

– Policy primarily protecting integrity	

•  Confidentiality policy	

– Policy protecting only confidentiality	

•  Integrity policy	

– Policy protecting only integrity	

Slide #50	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Integrity and Transactions	

•  Begin in consistent state	

– “Consistent” defined by specification	

•  Perform series of actions (transaction)	

– Actions cannot be interrupted	

–  If actions complete, system in consistent state	

–  If actions do not complete, system reverts to

beginning (consistent) state	

Slide #51	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Trust	

Administrator installs patch	

1.  Trusts patch came from vendor, not

tampered with in transit	

2.  Trusts vendor tested patch thoroughly	

3.  Trusts vendor’s test environment

corresponds to local environment	

4.  Trusts patch is installed correctly	

Slide #52	

April 17, 2013	
 ECS 235B Spring Quarter 2013	

Trust in Formal Verification	

•  Gives formal mathematical proof that given
input i, program P produces output o as
specified	

•  Suppose a security-related program S
formally verified to work with operating
system O	

•  What are the assumptions?	

Slide #53	

