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Lecture #8	


•  Multiparent create	

•  Expressive power	

•  Typed Access Control Matrix (TAM)	

•  Overview of Policies	

•  The nature of policies	


– What they cover	
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Expressiveness	


•  Graph-based representation to compare models	

•  Graph	


–  Vertex: represents entity, has static type	

–  Edge: represents right, has static type	


•  Graph rewriting rules:	

–  Initial state operations create graph in a particular state	

–  Node creation operations add nodes, incoming edges	

–  Edge adding operations add new edges between 

existing vertices	
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Example: 3-Parent Joint Creation	


•  Simulate with 2-parent	

– Nodes P1, P2, P3 parents	

– Create node C with type c with edges of type e	

– Add node A1 of type a and edge from P1 to A1 

of type e´	


P2	
 P3	
P1	


A1	


Slide #3	




April 17, 2013	
 ECS 235B Spring Quarter 2013	


Next Step	


•  A1, P2 create A2; A2, P3 create A3	

•  Type of nodes, edges are a and e´	


P2	
 P3	
P1	


A1	
 A2	

A3	
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Next Step	


•  A3 creates S, of type a	

•  S creates C, of type c	


S	
C	


P2	
 P3	
P1	


A1	
 A2	

A3	
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Last Step	


•  Edge adding operations:	

– P1→A1→A2→A3→S→C: P1 to C edge type e	

– P2→A2→A3→S→C: P2 to C edge type e	

– P3→A3→S→C: P3 to C edge type e	


S	


C	


P2	
 P3	
P1	


A1	

A2	


A3	
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Definitions	


•  Scheme: graph representation as above	

•  Model: set of schemes	

•  Schemes A, B correspond if graph for both 

is identical when all nodes with types not in 
A and edges with types in A are deleted	
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Example	


•  Above 2-parent joint creation simulation in 
scheme TWO	


•  Equivalent to 3-parent joint creation scheme 
THREE in which P1, P2, P3, C are of same 
type as in TWO, and edges from P1, P2, P3 
to C are of type e, and no types a and e´ 
exist in TWO	
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Simulation	


Scheme A simulates scheme B iff	

•  every state B can reach has a corresponding state 

in A that A can reach; and	

•  every state that A can reach either corresponds to a 

state B can reach, or has a successor state that 
corresponds to a state B can reach	

–  The last means that A can have intermediate states not 

corresponding to states in B, like the intermediate ones 
in TWO in the simulation of THREE	
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Expressive Power	


•  If there is a scheme in MA that no scheme in 
MB can simulate, MB less expressive than 
MA	


•  If every scheme in MA can be simulated by 
a scheme in MB, MB as expressive as MA	


•  If MA as expressive as MB and vice versa, 
MA and MB equivalent	
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Example	

•  Scheme A in model M	


–  Nodes X1, X2, X3	

–  2-parent joint create	

–  1 node type, 1 edge type	

–  No edge adding operations	

–  Initial state: X1, X2, X3, no edges	


•  Scheme B in model N	

–  All same as A except no 2-parent joint create	

–  1-parent create	


•  Which is more expressive?	

Slide #11	




April 17, 2013	
 ECS 235B Spring Quarter 2013	


Can A Simulate B?	


•  Scheme A simulates 1-parent create: have 
both parents be same node	

– Model M as expressive as model N	
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Can B Simulate A?	


•  Suppose X1, X2 jointly create Y in A	

– Edges from X1, X2 to Y, no edge from X3 to Y	


•  Can B simulate this?	

– Without loss of generality, X1 creates Y	

– Must have edge adding operation to add edge 

from X2 to Y	

– One type of node, one type of edge, so 

operation can add edge between any 2 nodes	
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No	

•  All nodes in A have even number of incoming 

edges	

–  2-parent create adds 2 incoming edges	


•  Edge adding operation in B that can edge from X2 
to C can add one from X3 to C	

–  A cannot enter this state 	


•  A, cannot have node (C) with 3 incoming edges	

–  B cannot transition to a state in which Y has even 

number of incoming edges	

•  No remove rule	


•  So B cannot simulate A; N less expressive than M	
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Theorem	


•  Monotonic single-parent models are less 
expressive than monotonic multiparent models	


•  Proof by contradiction	

–  Scheme A is multiparent model	

–  Scheme B is single parent create	

–  Claim: B can simulate A, without assumption that they 

start in the same initial state	

•  Note: example assumed same initial state	
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Outline of Proof	

•  X1, X2 nodes in A	


–  They create Y1, Y2, Y3 using multiparent create rule	

–  Y1, Y2 create Z, again using multiparent create rule	

–  Note: no edge from Y3 to Z can be added, as A has no edge-adding 

operation	


X1	


X2	


Y1	


Y3	


Y2	
 Z	
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Outline of Proof	

•  W, X1, X2 nodes in B	


–  W creates Y1, Y2, Y3 using single parent create rule, and adds edges for X1, X2 to 
all using edge adding rule	


–  Y1 creates Z, again using single parent create rule; now must add edge from X2 to Z 
to simulate A	


–  Use same edge adding rule to add edge from Y3 to Z: cannot duplicate this in 
scheme A!	


X1	


X2	


Y1	


Y3	


Y2	
 Z	
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Meaning	


•  Scheme B cannot simulate scheme A, 
contradicting hypothesis	


•  ESPM more expressive than SPM	

– ESPM multiparent and monotonic	

– SPM monotonic but single parent	
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Typed Access Matrix Model	


•  Like ACM, but with set of types T	

– All subjects, objects have types	

– Set of types for subjects TS	


•  Protection state is (S, O, τ, A)	

–  τ: O→T specifies type of each object	

–  If X subject, τ(X) ∈ TS	

–  If X object, τ(X) ∈ T – TS	
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Create Rules	

•  Subject creation	


–  create subject s of type ts	

–  s must not exist as subject or object when operation 

executed	

–  ts ∈ TS	


•  Object creation	

–  create object o of type to	

–  o must not exist as subject or object when operation 

executed	

–  to ∈ T – TS	
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Create Subject	


•  Precondition: s ∉ S	

•  Primitive command: create subject s of 

type t	

•  Postconditions:	


–  S´ = S ∪{ s }, O´ = O ∪{ s }	

–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t	

–  (∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]	

–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]	
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Create Object	


•  Precondition: o ∉ O	

•  Primitive command: create object o of type 

t	

•  Postconditions:	


–  S´ = S, O´ = O ∪ { o }	

–  (∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t	

–  (∀x ∈ S´)[a´[x, o] = ∅]	

–  (∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]	
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Definitions	


•  MTAM Model: TAM model without delete, 
destroy	

– MTAM is Monotonic TAM	


•  α(x1:t1, ..., xn:tn) create command	

–  ti child type in α if any of create subject xi of 

type ti or create object xi of type ti occur in α	

–  ti parent type otherwise	
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Cyclic Creates	


command havoc(s : u, p : u, f : v, q : w)	

	
create subject p of type u;	

	
create object f of type v;	

	
enter own into a[s, p];	

	
enter r into a[q, p];	

	
enter own into a[p, f];	

	
enter r into a[p, f]	


end	
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Creation Graph	


•  u, v child types	

•  u, w parent types	

•  Graph: lines from 

parent types to child 
types	


•  This one has cycles	


u	


v	
 w	
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Acyclic Creates	

command havoc(s : u, p : u, f : v, q : w)	

	
create object f of type v;	

	
enter own into a[s, p];	

	
enter r into a[q, p];	

	
enter own into a[p, f];	

	
enter r into a[p, f]	


end	
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Creation Graph	


•  v child type	

•  u, w parent types	

•  Graph: lines from 

parent types to child 
types	


•  This one has no cycles	


u	


v	
 w	


Slide #27	




April 17, 2013	
 ECS 235B Spring Quarter 2013	


Theorems	


•  Safety decidable for systems with acyclic MTAM 
schemes	

–  In fact, it’s NP-hard	


•  Safety for acyclic ternary MATM decidable in 
time polynomial in the size of initial ACM	

–  “Ternary” means commands have no more than 3 

parameters	

–  Equivalent in expressive power to MTAM	
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Comparing Security Properties	


•  Generalize what we have done earlier	

– Property we looked at is safety question	

– Others of interest are bounds on determining 

safety, what actions a specific subject can take, 
etc.	


•  Also eliminate the requirement of 
monotonicity	


•  Key idea: access requests are queries	
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Scheme (Alternate Definition)	


Σ set of states	

Q set of querties	

e: Σ × Q → { true, false } (entailment 

relation)	

Τ set of transition rules	

Access control scheme is (Σ, Q, e, T)	
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Note	


•  We write σ ⊢τ σ′for τ changing the system 
from state σ to state σ′	


•  We write σ ↦τ σ′ for τ allowing the system 
to change from state σ to state σ′	

–  It doesn’t actually change the state	
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Example: Take-Grant	


•  Σ set of all possible protection graphs	

•  Q set of queries	


	
{ can•share(α, v1, v2, G0) }	

•  e: e(σ0, q) = true if q holds; false if not	

•  Τ set of sequences of take, grant, create, 

remove rules	

So take-grant is an access control scheme	
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Security Analysis Instance	


•  (Σ, Q, e, T) access control scheme	

•  Security analysis instance is (σ, q, τ, Π) where:	


–  σ ∈ Σ, q ∈ Q, τ ∈ T	

– Π is ∀ or ∃	


•  Π is∃: does there exist a state σ′ such that σ 
↦* σ′ and e(σ′, q) = true	


•  Π is ∀: for all states σ′ such that σ ↦* σ′, is 
e(σ′, q) = true	
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Multiple Queries	


•  (Σ, Q, e, T) access control scheme	

•  Compositional security analysis instance is 

(σ, ϕ, τ, Π) where ϕ is a propositional 
logic formula of queries from Q	
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Mapping from A to B	


•  A mapping from A = (ΣA, QA, eA, TA) to B = 
(ΣB, QB, eB, TB) is a function	

	
f : (ΣA × TA) ∪ QA (ΣB × TB) ∪ QB	


•  Idea:	

– Each query in A corresponds to one in B	

– Each state, transition pair in A corresponds to a 

pair in B	
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Security-Preserving Mappings	


•  f : A → B	

•  Image of a security analysis instance (σA, 

qA, τA, Π) under f is (σB, qB, τB, Π), where:	

–  f((σA, τA)) = (σB, τB) and f(qA) = qB	


•  f is security-preserving if every security 
analysis instance in A is true iff its image in 
B is true	
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Strongly Security-Preserving	


•  Like security-preserving, but for 
compositional security analyses instances	


•  That is, for the image, instead of f(qA) = qB 
we have f(ϕA) = ϕB	
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Two Mapped Models	


•  Consider access control schemes A and B 
with a mapping f : A → B	


•  Security properties deal with answers to 
queries about states and transitions	


•  Given 2 corresponding states and 2 
corresponding sequences of transitions, 
corresponding queries must give same 
answer!	
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Equivalent Under Mapping	


•  A = (ΣA, QA, eA, TA)	

•  B = (ΣB, QB, eB, TB)	

•  f : A → B	

•  σA, σB equivalent under mapping f when 

eA(σA, qA) = eB(σB, qB)	
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State-Matching Reduction	


•  f is state-matching reduction if, for every  
σA ∈ ΣA and τA ∈ TA, (σB, τB) = f((σA, τA)) 
has the following properties:	

– ∀(σ′A ∈ ΣA) such that σA ↦τ* σ′A, there is a 

state σ′B ∈ ΣB such that σB ↦τ* σ′B, and σ′A 
and σ′B are equivalent under the mapping f	


– ∀(σ′B ∈ ΣB) such that σB ↦τ* σ′B, there is a 
state σ′A ∈ ΣA such that σA ↦τ* σ′A, and σ′A 
and σ′B are equivalent under the mapping f	
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Theorem	


•  A mapping f : A → B is strongly security-
preserving iff f is a state-matching reduction	
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Expressive Power	

If access control model MA has a scheme that cannot 
be mapped into a scheme in access control model MB 
using a state-matching reduction, then model MB is 
less expressive than model MA. If every scheme in 
model MA can be mapped into a scheme in model MB 
using a state-matching reduction, then model MB is as 
expressive as model MA. If MA is as expressive as MB, 
and MB is as expressive as MA, the models are 
equivalent.	

•  Note it does not require schemes to be monotonic!	
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Security Policies	

•  Overview	

•  The nature of policies	


–  What they cover	

–  Policy languages	


•  The nature of mechanisms	

–  Types	

–  Secure vs. precise	


•  Underlying both	

–  Trust	
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Overview	


•  Policies	

•  Trust	

•  Nature of Security Mechanisms	

•  Policy Expression Languages	

•  Limits on Secure and Precise Mechanisms	
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Security Policy	


•  Policy partitions system states into:	

– Authorized (secure)	


•  These are states the system can enter	

– Unauthorized (nonsecure)	


•  If the system enters any of these states, it’s a 
security violation	


•  Secure system	

– Starts in authorized state	

– Never enters unauthorized state	
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Confidentiality	

•  X set of entities, I information	

•  I has confidentiality property with respect to X if 

no x ∈ X can obtain information from I	

•  I can be disclosed to others	

•  Example:	


–  X set of students	

–  I final exam answer key	

–  I is confidential with respect to X if students cannot 

obtain final exam answer key	
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Integrity	


•  X set of entities, I information	

•  I has integrity property with respect to X if all x ∈ 

X trust information in I	

•  Types of integrity:	


–  trust I, its conveyance and protection (data integrity)	

–  I information about origin of something or an identity 

(origin integrity, authentication)	

–  I resource: means resource functions as it should 

(assurance)	
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Availability	


•  X set of entities, I resource	

•  I has availability property with respect to X if all x 
∈ X can access I	


•  Types of availability:	

–  traditional: x gets access or not	

–  quality of service: promised a level of access (for 

example, a specific level of bandwidth) and not meet it, 
even though some access is achieved	
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Policy Models	


•  Abstract description of a policy or class of 
policies	


•  Focus on points of interest in policies	

– Security levels in multilevel security models	

– Separation of duty in Clark-Wilson model	

– Conflict of interest in Chinese Wall model	
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Types of Security Policies	


•  Military (governmental) security policy	

– Policy primarily protecting confidentiality	


•  Commercial security policy	

– Policy primarily protecting integrity	


•  Confidentiality policy	

– Policy protecting only confidentiality	


•  Integrity policy	

– Policy protecting only integrity	
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Integrity and Transactions	


•  Begin in consistent state	

– “Consistent” defined by specification	


•  Perform series of actions (transaction)	

– Actions cannot be interrupted	

–  If actions complete, system in consistent state	

–  If actions do not complete, system reverts to 

beginning (consistent) state	
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Trust	


Administrator installs patch	

1.  Trusts patch came from vendor, not 

tampered with in transit	

2.  Trusts vendor tested patch thoroughly	

3.  Trusts vendor’s test environment 

corresponds to local environment	

4.  Trusts patch is installed correctly	
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Trust in Formal Verification	


•  Gives formal mathematical proof that given 
input i, program P produces output o as 
specified	


•  Suppose a security-related program S 
formally verified to work with operating 
system O	


•  What are the assumptions?	
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