Lecture #8

- Multiparent create
- Expressive power
- Typed Access Control Matrix (TAM)
- Overview of Policies
- The nature of policies
 - What they cover

Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes $\mathbf{P}_1, \mathbf{P}_2, \mathbf{P}_3$ parents
 - Create node C with type c with edges of type e
 - Add node \mathbf{A}_1 of type *a* and edge from \mathbf{P}_1 to \mathbf{A}_1 of type e'

Next Step

- $\mathbf{A}_1, \mathbf{P}_2$ create $\mathbf{A}_2; \mathbf{A}_2, \mathbf{P}_3$ create \mathbf{A}_3
- Type of nodes, edges are a and e'

Next Step

- A₃ creates **S**, of type *a*
- S creates C, of type c

Last Step

Definitions

- *Scheme*: graph representation as above
- *Model*: set of schemes
- Schemes *A*, *B correspond* if graph for both is identical when all nodes with types not in *A* and edges with types in *A* are deleted

Example

- Above 2-parent joint creation simulation in scheme *TWO*
- Equivalent to 3-parent joint creation scheme *THREE* in which P₁, P₂, P₃, C are of same type as in *TWO*, and edges from P₁, P₂, P₃ to C are of type *e*, and no types *a* and *e* exist in *TWO*

Simulation

Scheme A simulates scheme B iff

- every state *B* can reach has a corresponding state in *A* that *A* can reach; and
- every state that *A* can reach either corresponds to a state *B* can reach, or has a successor state that corresponds to a state *B* can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE

Expressive Power

- If there is a scheme in *MA* that no scheme in *MB* can simulate, *MB* less expressive than *MA*
- If every scheme in *MA* can be simulated by a scheme in *MB*, *MB* as expressive as *MA*
- If *MA* as expressive as *MB* and *vice versa*, *MA* and *MB* equivalent

Example

- Scheme A in model M
 - Nodes $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$
 - 2-parent joint create
 - 1 node type, 1 edge type
 - No edge adding operations
 - Initial state: $\mathbf{X}_1, \mathbf{X}_2, \mathbf{X}_3$, no edges
- Scheme *B* in model *N*
 - All same as A except no 2-parent joint create
 - 1-parent create
- Which is more expressive?

Can *A* Simulate *B*?

- Scheme *A* simulates 1-parent create: have both parents be same node
 - Model *M* as expressive as model *N*

Can *B* Simulate *A*?

- Suppose X₁, X₂ jointly create Y in A
 Edges from X₁, X₂ to Y, no edge from X₃ to Y
- Can *B* simulate this?
 - Without loss of generality, \mathbf{X}_1 creates \mathbf{Y}
 - Must have edge adding operation to add edge from \mathbf{X}_2 to \mathbf{Y}
 - One type of node, one type of edge, so operation can add edge between any 2 nodes

No

- All nodes in *A* have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in *B* that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - *A*, cannot have node (**C**) with 3 incoming edges
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So *B* cannot simulate *A*; *N* less expressive than *M* April 17, 2013 *ECS 235B Spring Quarter 2013* Slide #14

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
 - Scheme *A* is multiparent model
 - Scheme *B* is single parent create
 - Claim: *B* can simulate *A*, without assumption that they start in the same initial state
 - Note: example assumed same initial state

Outline of Proof

- $\mathbf{X}_1, \mathbf{X}_2$ nodes in A
 - They create $\mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3$ using multiparent create rule
 - \mathbf{Y}_1 , \mathbf{Y}_2 create \mathbf{Z} , again using multiparent create rule
 - *Note*: no edge from \mathbf{Y}_3 to \mathbf{Z} can be added, as A has no edge-adding operation

Outline of Proof

- $\mathbf{W}, \mathbf{X}_1, \mathbf{X}_2$ nodes in *B*
 - W creates $\mathbf{Y}_1, \mathbf{Y}_2, \mathbf{Y}_3$ using single parent create rule, and adds edges for $\mathbf{X}_1, \mathbf{X}_2$ to all using edge adding rule
 - \mathbf{Y}_1 creates \mathbf{Z} , again using single parent create rule; now must add edge from \mathbf{X}_2 to \mathbf{Z} to simulate A
 - Use same edge adding rule to add edge from \mathbf{Y}_3 to \mathbf{Z} : cannot duplicate this in scheme *A*!

April 17, 2013

Meaning

- Scheme *B* cannot simulate scheme *A*, contradicting hypothesis
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent

Typed Access Matrix Model

- Like ACM, but with set of types *T*
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ, A)
 - $-\tau: O \rightarrow T$ specifies type of each object
 - If **X** subject, $\tau(\mathbf{X}) \in TS$
 - If **X** object, $\tau(\mathbf{X}) \in T TS$

Create Rules

- Subject creation
 - create subject s of type ts
 - s must not exist as subject or object when operation executed
 - $-ts \in TS$
- Object creation
 - create object *o* of type *to*
 - *o* must not exist as subject or object when operation executed
 - $-to \in T TS$

Create Subject

- Precondition: $s \notin S$
- Primitive command: create subject s of type t
- Postconditions:

$$-S' = S \cup \{s\}, O' = O \cup \{s\}$$

- $(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t$
- $(\forall y \in O')[a'[s, y] = \emptyset], (\forall x \in S')[a'[x, s] = \emptyset]$
- $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

Create Object

- Precondition: $o \notin O$
- Primitive command: create object *o* of type *t*
- Postconditions:

$$-S' = S, O' = O \cup \{ o \}$$

- $(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t$
- $(\forall x \in S')[a'[x, o] = \emptyset]$
- $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

Definitions

• MTAM Model: TAM model without **delete**, **destroy**

– MTAM is Monotonic TAM

- $\alpha(x_1:t_1, ..., x_n:t_n)$ create command
 - t_i child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in α
 - $-t_i$ parent type otherwise

Cyclic Creates

```
command havoc(s : u, p : u, f : v, q : w)
create subject p of type u;
create object f of type v;
enter own into a[s, p];
enter r into a[q, p];
enter own into a[p, f];
enter r into a[p, f]
end
```

Creation Graph

- *u*, *v* child types
- *u*, *w* parent types
- Graph: lines from parent types to child types
- This one has cycles

Acyclic Creates

```
command havoc(s : u, p : u, f : v, q : w)
    create object f of type v;
    enter own into a[s, p];
    enter r into a[q, p];
    enter own into a[p, f];
    enter r into a[p, f]
end
```

Creation Graph

- *v* child type
- *u*, *w* parent types
- Graph: lines from parent types to child types
- This one has no cycles

Theorems

• Safety decidable for systems with acyclic MTAM schemes

– In fact, it's NP-hard

- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - "Ternary" means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM

Comparing Security Properties

- Generalize what we have done earlier
 - Property we looked at is safety question
 - Others of interest are bounds on determining safety, what actions a specific subject can take, etc.
- Also eliminate the requirement of monotonicity
- Key idea: access requests are queries

Scheme (Alternate Definition)

- Σ set of states
- Q set of querties
- $e: \Sigma \times Q \rightarrow \{ \text{ true, false } \} (entailment relation})$
- T set of transition rules

Access control scheme is (Σ, Q, e, T)

Note

- We write $\sigma \vdash_{\tau} \sigma'$ for τ changing the system from state σ to state σ'
- We write $\sigma \mapsto_{\tau} \sigma'$ for τ allowing the system to change from state σ to state σ'

It doesn't actually change the state

Example: Take-Grant

- Σ set of all possible protection graphs
- Q set of queries { $can \bullet share(\alpha, \mathbf{v}_1, \mathbf{v}_2, G_0)$ }
- $e: e(\sigma_0, q) = true \text{ if } q \text{ holds; false if not}$
- T set of sequences of take, grant, create, remove rules
- So take-grant is an access control scheme

Security Analysis Instance

- (Σ, Q, e, T) access control scheme
- Security analysis instance is (σ, q, τ, Π) where: $-\sigma \in \Sigma, q \in Q, \tau \in T$
 - $-\Pi$ is \forall or \exists
- Π is \exists : does there exist a state σ' such that σ $\mapsto^* \sigma'$ and $e(\sigma', q) =$ true
- Π is \forall : for all states σ' such that $\sigma \mapsto^* \sigma'$, is $e(\sigma', q) = \text{true}$

Multiple Queries

- (Σ, Q, e, T) access control scheme
- Compositional security analysis instance is (σ, φ, τ, Π) where φ is a propositional logic formula of queries from Q

Mapping from *A* to *B*

- A mapping from $A = (\Sigma^A, Q^A, e^A, T^A)$ to $B = (\Sigma^B, Q^B, e^B, T^B)$ is a function $f: (\Sigma^A \times T^A) \cup Q^A (\Sigma^B \times T^B) \cup Q^B$
- Idea:
 - Each query in A corresponds to one in B
 - Each state, transition pair in A corresponds to a pair in B

Security-Preserving Mappings

- $f: A \to B$
- Image of a security analysis instance (σ^A , q^A , τ^A , Π) under f is (σ^B , q^B , τ^B , Π), where: $-f((\sigma^A, \tau^A)) = (\sigma^B, \tau^B)$ and $f(q^A) = q^B$
- *f* is *security-preserving* if every security analysis instance in *A* is true iff its image in *B* is true

Strongly Security-Preserving

- Like security-preserving, but for compositional security analyses instances
- That is, for the image, instead of $f(q^A) = q^B$ we have $f(\mathbf{\Phi}^A) = \mathbf{\Phi}^B$

Two Mapped Models

- Consider access control schemes A and B with a mapping $f: A \rightarrow B$
- Security properties deal with answers to queries about states and transitions
- Given 2 corresponding states and 2 corresponding sequences of transitions, corresponding queries must give same answer!

Equivalent Under Mapping

- $A = (\Sigma^A, Q^A, e^A, T^A)$
- $B = (\Sigma^B, Q^B, e^B, T^B)$
- $f: A \rightarrow B$
- σ^A , σ^B equivalent under mapping f when $e^A(\sigma^A, q^A) = e^B(\sigma^B, q^B)$

State-Matching Reduction

- *f* is *state-matching reduction* if, for every $\sigma^A \in \Sigma^A$ and $\tau^A \in T^A$, $(\sigma^B, \tau^B) = f((\sigma^A, \tau^A))$ has the following properties:
 - $\forall (\sigma'^A \in \Sigma^A)$ such that $\sigma^A \mapsto_{\tau}^* \sigma'^A$, there is a state $\sigma'^B \in \Sigma^B$ such that $\sigma^B \mapsto_{\tau}^* \sigma'^B$, and σ'^A and σ'^B are equivalent under the mapping *f*
 - $\forall (\sigma' {}^{B} \in \Sigma^{B})$ such that $\sigma^{B} \mapsto_{\tau}^{*} \sigma' {}^{B}$, there is a state $\sigma' {}^{A} \in \Sigma^{A}$ such that $\sigma^{A} \mapsto_{\tau}^{*} \sigma' {}^{A}$, and $\sigma' {}^{A}$ and $\sigma' {}^{B}$ are equivalent under the mapping *f*

April 17, 2013

ECS 235B Spring Quarter 2013

Theorem

• A mapping $f: A \rightarrow B$ is strongly securitypreserving iff f is a state-matching reduction

Expressive Power

If access control model *MA* has a scheme that cannot be mapped into a scheme in access control model *MB* using a state-matching reduction, then model *MB* is *less expressive than* model MA. If every scheme in model *MA* can be mapped into a scheme in model *MB* using a state-matching reduction, then model *MB* is *as expressive as* model *MA*. If *MA* is as expressive as *MB*, and *MB* is as expressive as *MA*, the models are *equivalent*.

• Note it does not require schemes to be monotonic!

Security Policies

- Overview
- The nature of policies
 - What they cover
 - Policy languages
- The nature of mechanisms
 - Types
 - Secure vs. precise
- Underlying both
 - Trust

Overview

- Policies
- Trust
- Nature of Security Mechanisms
- Policy Expression Languages
- Limits on Secure and Precise Mechanisms

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- *I* has *confidentiality* property with respect to *X* if no $x \in X$ can obtain information from *I*
- *I* can be disclosed to others
- Example:
 - *X* set of students
 - *I* final exam answer key
 - *I* is confidential with respect to *X* if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- *I* has *integrity* property with respect to *X* if all *x* ∈ *X* trust information in *I*
- Types of integrity:
 - trust *I*, its conveyance and protection (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - *I* resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- *I* has *availability* property with respect to *X* if all $x \in X$ can access *I*
- Types of availability:
 - traditional: *x* gets access or not
 - quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved

Policy Models

- Abstract description of a policy or class of policies
- Focus on points of interest in policies
 - Security levels in multilevel security models
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model

Types of Security Policies

- Military (governmental) security policy
 Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

Integrity and Transactions

- Begin in consistent state
 - "Consistent" defined by specification
- Perform series of actions (*transaction*)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to beginning (consistent) state

Trust

Administrator installs patch

- 1. Trusts patch came from vendor, not tampered with in transit
- 2. Trusts vendor tested patch thoroughly
- 3. Trusts vendor's test environment corresponds to local environment
- 4. Trusts patch is installed correctly

Trust in Formal Verification

- Gives formal mathematical proof that given input *i*, program *P* produces output *o* as specified
- Suppose a security-related program *S* formally verified to work with operating system *O*
- What are the assumptions?