
April 22, 2013	
 ECS 235B Spring Quarter 2013	

Lecture #10	

•  Secure and precise mechanisms	

–  Can we do both?	

•  Bell-LaPadula model	

–  Informal: lattice version	

–  Formal: more mathematical one (but still a lattice!)	

Slide #1	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Secure, Precise Mechanisms	

•  Can one devise a procedure for developing a
mechanism that is both secure and precise?	

–  Consider confidentiality policies only here	

–  Integrity policies produce same result	

•  Program a function with multiple inputs and one
output	

–  Let p be a function p: I1 × ... × In → R. Then p is a

program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output
r → R	

Slide #2	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Programs and Postulates	

•  Observability Postulate: the output of a function

encodes all available information about its inputs	

–  Covert channels considered part of the output	

•  Example: authentication function	

–  Inputs name, password; output Good or Bad	

–  If name invalid, immediately print Bad; else access

database	

–  Problem: time output of Bad, can determine if name

valid	

–  This means timing is part of output	

Slide #3	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Protection Mechanism	

•  Let p be a function p: I1 × ... × In → R. A
protection mechanism m is a function m: I1 × ... ×
In → R ∪ E for which, when ik ∈ Ik, 1 ≤ k ≤ n,
either	

–  m(i1, ..., in) = p(i1, ..., in) or	

–  m(i1, ..., in) ∈ E.	

•  E is set of error outputs	

–  In above example, E = { “Password Database Missing”,

“Password Database Locked” }	

Slide #4	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Confidentiality Policy	

•  Confidentiality policy for program p says which

inputs can be revealed	

–  Formally, for p: I1 × ... × In → R, it is a function

c: I1 × ... × In → A, where A ⊆ I1 × ... × In	

–  A is set of inputs available to observer	

•  Security mechanism is function
m: I1 × ... × In → R ∪ E	

–  m secure iff ∃ m´: A → R ∪ E such that, for all ik ∈ Ik,

1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))	

–  m returns values consistent with c	

Slide #5	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Examples	

•  c(i1, ..., in) = C, a constant	

– Deny observer any information (output does

not vary with inputs)	

•  c(i1, ..., in) = (i1, ..., in), and m´ = m	

– Allow observer full access to information	

•  c(i1, ..., in) = i1	

– Allow observer information about first input
but no information about other inputs.	

Slide #6	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Precision	

•  Security policy may be over-restrictive	

–  Precision measures how over-restrictive	

•  m1, m2 distinct protection mechanisms for program
p under policy c	

–  m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,	

	
m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)	

–  m1 more precise than m2 (m1 ~ m2) if there is an input
(i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and
m2(i1´, …, in´) ≠ p(i1´, …, in´).	

Slide #7	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Combining Mechanisms	

•  m1, m2 protection mechanisms	

•  m3 = m1 ∪ m2	

–  For inputs on which m1 and m2 return same value as p,
m3 does also; otherwise, m3 returns same value as m1	

•  Theorem: if m1, m2 secure, then m3 secure	

–  Also, m3 ≈ m1 and m3 ≈ m2	

–  Follows from definitions of secure, precise, and m3 	

Slide #8	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Existence Theorem	

•  For any program p and security policy c,
there exists a precise, secure mechanism m*
such that, for all secure mechanisms m
associated with p and c, m* ≈ m	

– Maximally precise mechanism	

– Ensures security	

– Minimizes number of denials of legitimate

actions	

Slide #9	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Lack of Effective Procedure	

•  There is no effective procedure that
determines a maximally precise, secure
mechanism for any policy and program.	

– Sketch of proof: let c be constant function, and

p compute function T(x). Assume T(x) = 0.
Consider program q, where	

p;!
if z = 0 then y := 1 else y := 2;!
halt;!

	

Slide #10	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Rest of Sketch	

•  m associated with q, y value of m, z output of p

corresponding to T(x)	

•  ∀x[T(x) = 0] → m(x) = 1	

•  ∃x´ [T(x´) ≠ 0] → m(x) = 2 or m(x)↑	

•  If you can determine m, you can determine

whether T(x) = 0 for all x	

•  Determines some information about input (is it 0?)	

•  Contradicts constancy of c.	

•  Therefore no such procedure exists	

Slide #11	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Overview	

•  Bell-LaPadula	

–  Informally	

– Formally	

– Example Instantiation	

•  Tranquility	

•  Controversy	

– System Z	

Slide #12	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Confidentiality Policy	

•  Goal: prevent the unauthorized disclosure of
information	

– Deals with information flow	

–  Integrity incidental	

•  Multi-level security models are best-known
examples	

– Bell-LaPadula Model basis for many, or most,

of these	

Slide #13	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Bell-LaPadula Model, Step 1	

•  Security levels arranged in linear ordering	

– Top Secret: highest	

– Secret	

– Confidential	

– Unclassified: lowest	

•  Levels consist of security clearance L(s)	

– Objects have security classification L(o)	

Slide #14	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Example	

security level	
 subject	
 object	

Top Secret	
 Tamara	
 Personnel Files	

Secret	
 Samuel	
 E-Mail Files	

Confidential	
 Claire	
 Activity Logs	

Unclassified	
 Ulaley	
 Telephone Lists	

•  Tamara can read all files	

•  Claire cannot read Personnel or E-Mail Files	

•  Ulaley can only read Telephone Lists	

Slide #15	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Reading Information	

•  Information flows up, not down	

–  “Reads up” disallowed, “reads down” allowed	

•  Simple Security Condition (Step 1)	

– Subject s can read object o iff, L(o) ≤ L(s) and s

has permission to read o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no reads up” rule	

Slide #16	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Writing Information	

•  Information flows up, not down	

–  “Writes up” allowed, “writes down” disallowed	

•  *-Property (Step 1)	

– Subject s can write object o iff L(s) ≤ L(o) and s

has permission to write o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no writes down” rule	

Slide #17	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Basic Security Theorem, Step 1	

•  If a system is initially in a secure state, and
every transition of the system satisfies the
simple security condition, step 1, and the *-
property, step 1, then every state of the
system is secure	

– Proof: induct on the number of transitions	

Slide #18	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Bell-LaPadula Model, Step 2	

•  Expand notion of security level to include
categories	

•  Security level is (clearance, category set)	

•  Examples	

–  (Top Secret, { NUC, EUR, ASI })	

–  (Confidential, { EUR, ASI })	

–  (Secret, { NUC, ASI })	

Slide #19	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Levels and Lattices	

•  (A, C) dom (Aʹ′, Cʹ′) iff Aʹ′ ≤ A and Cʹ′ ⊆ C	

•  Examples	

–  (Top Secret, {NUC, ASI}) dom (Secret, {NUC})	

–  (Secret, {NUC, EUR}) dom (Confidential,{NUC, EUR})	

–  (Top Secret, {NUC}) ¬dom (Confidential, {EUR})	

•  Let C be set of classifications, K set of categories.
Set of security levels L = C × K, dom form lattice	

–  lub(L) = (max(A), C)	

–  glb(L) = (min(A), ∅)	

Slide #20	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Levels and Ordering	

•  Security levels partially ordered	

– Any pair of security levels may (or may not) be

related by dom	

•  “dominates” serves the role of “greater than”

in step 1	

–  “greater than” is a total ordering, though	

Slide #21	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Reading Information	

•  Information flows up, not down	

–  “Reads up” disallowed, “reads down” allowed	

•  Simple Security Condition (Step 2)	

– Subject s can read object o iff L(s) dom L(o)

and s has permission to read o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no reads up” rule	

Slide #22	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Writing Information	

•  Information flows up, not down	

–  “Writes up” allowed, “writes down” disallowed	

•  *-Property (Step 2)	

– Subject s can write object o iff L(o) dom L(s)

and s has permission to write o	

•  Note: combines mandatory control (relationship of

security levels) and discretionary control (the
required permission)	

– Sometimes called “no writes down” rule	

Slide #23	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Basic Security Theorem, Step 2	

•  If a system is initially in a secure state, and every

transition of the system satisfies the simple
security condition, step 2, and the *-property, step
2, then every state of the system is secure	

–  Proof: induct on the number of transitions	

–  In actual Basic Security Theorem, discretionary access

control treated as third property, and simple security
property and *-property phrased to eliminate
discretionary part of the definitions — but simpler to
express the way done here.	

Slide #24	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Problem	

•  Colonel has (Secret, {NUC, EUR})
clearance	

•  Major has (Secret, {EUR}) clearance	

– Major can talk to colonel (“write up” or “read

down”)	

– Colonel cannot talk to major (“read up” or

“write down”)	

•  Clearly absurd!	

Slide #25	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Solution	

•  Define maximum, current levels for subjects	

–  maxlevel(s) dom curlevel(s)	

•  Example	

–  Treat Major as an object (Colonel is writing to him/her)	

–  Colonel has maxlevel (Secret, { NUC, EUR })	

–  Colonel sets curlevel to (Secret, { EUR })	

–  Now L(Major) dom curlevel(Colonel)	

•  Colonel can write to Major without violating “no writes down”	

–  Does L(s) mean curlevel(s) or maxlevel(s)?	

•  Formally, we need a more precise notation	

Slide #26	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Formal Model Definitions	

•  S subjects, O objects, P rights	

–  Defined rights: r read, a write, w read/write, e empty	

•  M set of possible access control matrices	

•  C set of clearances/classifications, K set of

categories, L = C × K set of security levels	

•  F = { (fs, fo, fc) }	

–  fs(s) maximum security level of subject s	

–  fc(s) current security level of subject s	

–  fo(o) security level of object o	

Slide #27	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

More Definitions	

•  Hierarchy functions H: O→P(O)	

•  Requirements	

1.  oi ≠ oj ⇒ h(oi) ∩ h(oj) = ∅	

2.  There is no set { o1, …, ok } ⊆ O such that, for i = 1,

…, k, oi+1 ∈ h(oi) and ok+1 = o1.	

•  Example	

–  Tree hierarchy; take h(o) to be the set of children of o	

–  No two objects have any common children (#1)	

–  There are no loops in the tree (#2)	

Slide #28	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

States and Requests	

•  V set of states	

– Each state is (b, m, f, h)	

•  b is like m, but excludes rights not allowed by f	

•  R set of requests for access	

•  D set of outcomes	

–  y allowed, n not allowed, i illegal, o error	

•  W set of actions of the system	

– W ⊆ R × D × V × V	

Slide #29	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

History	

•  X = RN set of sequences of requests	

•  Y = DN set of sequences of decisions	

•  Z = VN set of sequences of states	

•  Interpretation	

–  At time t ∈ N, system is in state zt–1 ∈ V; request xt ∈ R
causes system to make decision yt ∈ D, transitioning the
system into a (possibly new) state zt ∈ V	

•  System representation: Σ(R, D, W, z0) ∈ X × Y × Z	

–  (x, y, z) ∈ Σ(R, D, W, z0) iff (xt, yt, zt–1, zt) ∈ W for all t	

–  (x, y, z) called an appearance of Σ(R, D, W, z0)	

Slide #30	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  S = { s }, O = { o }, P = { r, w }	

•  C = { High, Low }, K = { All }	

•  For every f ∈ F, either fc(s) = (High, { All }) or

fc(s) = (Low, { All })	

•  Initial State:	

–  b1 = { (s, o, r) }, m1 ∈ M gives s read access over o, and
for f1 ∈ F, fc,1(s) = (High, {All}), fo,1(o) = (Low, {All})	

–  Call this state v0 = (b1, m1, f1, h1) ∈ V.	

Slide #31	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

First Transition	

•  Now suppose in state v0: S = { s, sʹ′ }	

•  Suppose fc,1(sʹ′) = (Low, {All})	

•  m1 ∈ M gives s and sʹ′ read access over o	

•  As sʹ′ not written to o, b1 = { (s, o, r) }	

•  z0 = v0; if sʹ′ requests r1 to write to o:	

–  System decides d1 = y	

–  New state v1 = (b2, m1, f1, h1) ∈ V	

–  b2 = { (s, o, r), (sʹ′, o, w) }	

–  Here, x = (r1), y = (y), z = (v0, v1)	

Slide #32	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Second Transition	

•  Current state v1 = (b2, m1, f1, h1) ∈ V	

–  b2 = { (s, o, r), (sʹ′, o, w) }	

–  fc,1(s) = (High, { All }), fo,1(o) = (Low, { All })	

•  s requests r2 to write to o:	

–  System decides d2 = n (as fc,1(s) dom fo,1(o))	

–  New state v2 = (b2, m1, f1, h1) ∈ V	

–  b2 = { (s, o, r), (sʹ′, o, w) }	

–  So, x = (r1, r2), y = (y, n), z = (v0, v1, v2), where v2 = v1	

Slide #33	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Basic Security Theorem	

•  Define action, secure formally	

– Using a bit of foreshadowing for “secure”	

•  Restate properties formally	

– Simple security condition	

–  *-property	

– Discretionary security property	

•  State conditions for properties to hold	

•  State Basic Security Theorem	

Slide #34	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Action	

•  A request and decision that causes the system to

move from one state to another	

–  Final state may be the same as initial state	

•  (r, d, v, vʹ′) ∈ R × D × V × V is an action of Σ(R, D,
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a
t ∈ N such that (r, d, v, vʹ′) = (xt, yt, zt, zt–1)	

–  Request r made when system in state v; decision d

moves system into (possibly the same) state vʹ′	

–  Correspondence with (xt, yt, zt, zt–1) makes states,

requests, part of a sequence	

Slide #35	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Simple Security Condition	

•  (s, o, p) ∈ S × O × P satisfies the simple security

condition relative to f (written ssc rel f) iff one of
the following holds:	

1.  p = e or p = a	

2.  p = r or p = w and fs(s) dom fo(o)	

•  Holds vacuously if rights do not involve reading	

•  If all elements of b satisfy ssc rel f, then state

satisfies simple security condition	

•  If all states satisfy simple security condition,

system satisfies simple security condition	

Slide #36	

April 22, 2013	
 ECS 235B Spring Quarter 2013	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the simple security

condition for any secure state z0 iff for every
action (r, d, (b, m, f, h), (bʹ′, mʹ′, fʹ′, hʹ′)), W satisfies	

–  Every (s, o, p) ∈ b – bʹ′ satisfies ssc rel f	

–  Every (s, o, p) ∈ bʹ′ that does not satisfy ssc rel f is not

in b	

•  Note: “secure” means z0 satisfies ssc rel f	

•  First says every (s, o, p) added satisfies ssc rel f;

second says any (s, o, p) in bʹ′ that does not satisfy
ssc rel f is deleted	

Slide #37	

