Lecture #10

- Secure and precise mechanisms
 - Can we do both?
- Bell-LaPadula model
 - Informal: lattice version
 - Formal: more mathematical one (but still a lattice!)

Secure, Precise Mechanisms

- Can one devise a procedure for developing a mechanism that is both secure *and* precise?
 - Consider confidentiality policies only here
 - Integrity policies produce same result
- Program a function with multiple inputs and one output
 - Let *p* be a function *p*: $I_1 \times ... \times I_n \rightarrow R$. Then *p* is a program with *n* inputs $i_k \in I_k$, $1 \le k \le n$, and one output $r \rightarrow R$

April 22, 2013

ECS 235B Spring Quarter 2013

Programs and Postulates

- Observability Postulate: the output of a function encodes all available information about its inputs
 - Covert channels considered part of the output
- Example: authentication function
 - Inputs name, password; output Good or Bad
 - If name invalid, immediately print Bad; else access database
 - Problem: time output of Bad, can determine if name valid
 - This means timing is part of output

April 22, 2013

Protection Mechanism

- Let *p* be a function $p: I_1 \times ... \times I_n \rightarrow R$. A protection mechanism *m* is a function *m*: $I_1 \times ... \times I_n \rightarrow R \cup E$ for which, when $i_k \in I_k$, $1 \le k \le n$, either
 - $-m(i_1, ..., i_n) = p(i_1, ..., i_n)$ or
 - $-m(i_1,...,i_n)\in E.$
- *E* is set of error outputs
 - In above example, E = { "Password Database Missing",
 "Password Database Locked" }

Confidentiality Policy

- Confidentiality policy for program *p* says which inputs can be revealed
 - Formally, for $p: I_1 \times ... \times I_n \rightarrow R$, it is a function $c: I_1 \times ... \times I_n \rightarrow A$, where $A \subseteq I_1 \times ... \times I_n$
 - -A is set of inputs available to observer
- Security mechanism is function $m: I_1 \times ... \times I_n \rightarrow R \cup E$ -m secure iff $\exists m': A \rightarrow R \cup E$ such that, for all $i_k \in I_k$, $1 \le k \le n, m(i_1, ..., i_n) = m'(c(i_1, ..., i_n))$
 - -m returns values consistent with c

Examples

- $c(i_1, ..., i_n) = C$, a constant
 - Deny observer any information (output does not vary with inputs)

•
$$c(i_1, ..., i_n) = (i_1, ..., i_n)$$
, and $m' = m$

– Allow observer full access to information

•
$$c(i_1, ..., i_n) = i_1$$

 Allow observer information about first input but no information about other inputs.

Precision

- Security policy may be over-restrictive – Precision measures how over-restrictive
- m_1, m_2 distinct protection mechanisms for program p under policy c
 - m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs i_1, \dots, i_n , $m_2(i_1, \dots, i_n) = p(i_1, \dots, i_n) \Rightarrow m_1(i_1, \dots, i_n) = p(i_1, \dots, i_n)$
 - m_1 more precise than $m_2 (m_1 \sim m_2)$ if there is an input (i_1, \dots, i_n) such that $m_1(i_1, \dots, i_n) = p(i_1, \dots, i_n)$ and $m_2(i_1, \dots, i_n) \neq p(i_1, \dots, i_n)$.

April 22, 2013

ECS 235B Spring Quarter 2013

Combining Mechanisms

- m_1, m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
 - For inputs on which m_1 and m_2 return same value as p, m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1, m_2 secure, then m_3 secure
 - Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 - Follows from definitions of secure, precise, and m_3

Existence Theorem

- For any program p and security policy c, there exists a precise, secure mechanism m* such that, for all secure mechanisms m associated with p and c, m* ≈ m
 - Maximally precise mechanism
 - Ensures security
 - Minimizes number of denials of legitimate actions

Lack of Effective Procedure

- There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 - Sketch of proof: let *c* be constant function, and *p* compute function T(x). Assume T(x) = 0. Consider program *q*, where

```
p;
if z = 0 then y := 1 else y := 2;
halt;
```

Rest of Sketch

• *m* associated with *q*, *y* value of *m*, *z* output of *p* corresponding to *T*(*x*)

•
$$\forall x[T(x) = 0] \rightarrow m(x) = 1$$

- $\exists x \in [T(x) \neq 0] \rightarrow m(x) = 2 \text{ or } m(x) \uparrow$
- If you can determine m, you can determine whether T(x) = 0 for all x
- Determines some information about input (is it 0?)
- Contradicts constancy of *c*.
- Therefore no such procedure exists

April 22, 2013

Overview

- Bell-LaPadula
 - Informally
 - Formally
 - Example Instantiation
- Tranquility
- Controversy
 - System Z

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist of security clearance L(s)
 Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists April 22, 2013 ECS 235B Spring Quarter 2013

Reading Information

- Information flows *up*, not *down* "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject *s* can read object *o* iff, $L(o) \le L(s)$ and *s* has permission to read *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject *s* can write object *o* iff $L(s) \le L(o)$ and *s* has permission to write *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance*, *category set*)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, { EUR, ASI })
 - $(Secret, \{NUC, ASI\})$

Levels and Lattices

- (A, C) dom (A', C') iff $A' \leq A$ and $C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) *dom* (Secret, {NUC})
 - (Secret, {NUC, EUR}) *dom* (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) ¬*dom* (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels L = C × K, dom form lattice - lub(L) = (max(A), C)
 - $glb(L) = (min(A), \emptyset)$

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by *dom*
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down* "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject s can read object o iff L(s) dom L(o) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
 - Major can talk to colonel ("write up" or "read down")
 - Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

April 22, 2013

Solution

- Define maximum, current levels for subjects
 maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has maxlevel (Secret, { NUC, EUR })
 - Colonel sets curlevel to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"
 - Does L(s) mean curlevel(s) or maxlevel(s)?
 - Formally, we need a more precise notation

April 22, 2013

ECS 235B Spring Quarter 2013

Formal Model Definitions

- S subjects, O objects, P rights
 Defined rights: <u>r</u> read, <u>a</u> write, <u>w</u> read/write, <u>e</u> empty
- *M* set of possible access control matrices
- *C* set of clearances/classifications, *K* set of categories, $L = C \times K$ set of security levels
- $F = \{ (f_s, f_o, f_c) \}$
 - $-f_s(s)$ maximum security level of subject s
 - $-f_c(s)$ current security level of subject s
 - $-f_o(o)$ security level of object o

More Definitions

- Hierarchy functions $H: O \rightarrow P(O)$
- Requirements
 - 1. $o_i \neq o_j \Longrightarrow h(o_i) \cap h(o_j) = \emptyset$
 - 2. There is no set $\{o_1, \dots, o_k\} \subseteq O$ such that, for i = 1, $\dots, k, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
 - Tree hierarchy; take h(o) to be the set of children of o
 - No two objects have any common children (#1)
 - There are no loops in the tree (#2)

States and Requests

- *V* set of states
 - Each state is (b, m, f, h)
 - b is like m, but excludes rights not allowed by f
- *R* set of requests for access
- *D* set of outcomes
 - <u>y</u> allowed, <u>n</u> not allowed, <u>i</u> illegal, <u>o</u> error
- W set of actions of the system $-W \subseteq R \times D \times V \times V$

History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
 - At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$
 - $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t
 - (x, y, z) called an *appearance* of $\Sigma(R, D, W, z_0)$

April 22, 2013

ECS 235B Spring Quarter 2013

Example

- $S = \{ s \}, O = \{ o \}, P = \{ \underline{r}, \underline{w} \}$
- $C = \{ \text{High}, \text{Low} \}, K = \{ \text{All} \}$
- For every $f \in F$, either $f_c(s) = (\text{High}, \{\text{All}\})$ or $f_c(s) = (\text{Low}, \{\text{All}\})$
- Initial State:
 - $-b_1 = \{ (s, o, \underline{\mathbf{r}}) \}, m_1 \in M \text{ gives } s \text{ read access over } o, \text{ and} \\ \text{for } f_1 \in F, f_{c,1}(s) = (\text{High}, \{\text{All}\}), f_{o,1}(o) = (\text{Low}, \{\text{All}\}) \end{cases}$
 - Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.

First Transition

- Now suppose in state v_0 : $S = \{ s, s' \}$
- Suppose $f_{c,1}(s') = (Low, \{All\})$
- $m_1 \in M$ gives s and s' read access over o
- As s'not written to $o, b_1 = \{ (s, o, \underline{r}) \}$
- $z_0 = v_0$; if s' requests r_1 to write to o:
 - System decides $d_1 = \underline{y}$
 - New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{\mathbf{r}}), (s', o, \underline{\mathbf{w}}) \}$
 - Here, $x = (r_1), y = (\underline{y}), z = (v_0, v_1)$

Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$ $-b_2 = \{ (s, o, \underline{\mathbf{r}}), (s', o, \underline{\mathbf{w}}) \}$ $-f_{c,1}(s) = (\text{High}, \{ \text{All} \}), f_{o,1}(o) = (\text{Low}, \{ \text{All} \})$
- *s* requests r_2 to write to *o*:
 - System decides $d_2 = \underline{n} (as f_{c,1}(s) dom f_{o,1}(o))$
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{\mathbf{r}}), (s', o, \underline{\mathbf{w}}) \}$
 - So, $x = (r_1, r_2), y = (\underline{y}, \underline{n}), z = (v_0, v_1, v_2)$, where $v_2 = v_1$

Basic Security Theorem

- Define action, secure formally

 Using a bit of foreshadowing for "secure"
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

• A request and decision that causes the system to move from one state to another

– Final state may be the same as initial state

- $(r, d, v, v') \in R \times D \times V \times V$ is an *action* of $\Sigma(R, D, W, z_0)$ iff there is an $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_t, z_{t-1})$
 - Request *r* made when system in state *v*; decision *d* moves system into (possibly the same) state *v*'
 - Correspondence with (x_t, y_t, z_t, z_{t-1}) makes states, requests, part of a sequence

Simple Security Condition

• $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to f (written *ssc rel f*) iff one of the following holds:

1.
$$p = \underline{e} \text{ or } p = \underline{a}$$

- 2. $p = \underline{\mathbf{r}} \text{ or } p = \underline{\mathbf{w}} \text{ and } f_s(s) \operatorname{dom} f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of *b* satisfy *ssc rel f*, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

April 22, 2013

Necessary and Sufficient

Σ(R, D, W, z₀) satisfies the simple security condition for any secure state z₀ iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies

- Every $(s, o, p) \in b - b'$ satisfies *ssc relf*

- Every $(s, o, p) \in b'$ that does not satisfy *ssc rel f* is not in *b*
- Note: "secure" means z_0 satisfies *ssc rel f*
- First says every (*s*, *o*, *p*) added satisfies *ssc rel f*; second says any (*s*, *o*, *p*) in *b*' that does not satisfy *ssc rel f* is deleted

April 22, 2013

ECS 235B Spring Quarter 2013