
April 24, 2013	
 ECS 235B Spring Quarter 2013	

Lecture #11	

•  Bell-LaPadula model	

–  Formal: more mathematical one (but still a lattice!)	

Slide #1	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Basic Security Theorem	

•  Define action, secure formally	

– Using a bit of foreshadowing for “secure”	

•  Restate properties formally	

– Simple security condition	

–  *-property	

– Discretionary security property	

•  State conditions for properties to hold	

•  State Basic Security Theorem	

Slide #2	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Action	

•  A request and decision that causes the system to

move from one state to another	

–  Final state may be the same as initial state	

•  (r, d, v, vʹ′) ∈ R × D × V × V is an action of Σ(R, D,
W, z0) iff there is an (x, y, z) ∈ Σ(R, D, W, z0) and a
t ∈ N such that (r, d, v, vʹ′) = (xt, yt, zt, zt–1)	

–  Request r made when system in state v; decision d

moves system into (possibly the same) state vʹ′	

–  Correspondence with (xt, yt, zt, zt–1) makes states,

requests, part of a sequence	

Slide #3	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Simple Security Condition	

•  (s, o, p) ∈ S × O × P satisfies the simple security

condition relative to f (written ssc rel f) iff one of
the following holds:	

1.  p = e or p = a	

2.  p = r or p = w and fs(s) dom fo(o)	

•  Holds vacuously if rights do not involve reading	

•  If all elements of b satisfy ssc rel f, then state

satisfies simple security condition	

•  If all states satisfy simple security condition,

system satisfies simple security condition	

Slide #4	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the simple security

condition for any secure state z0 iff for every
action (r, d, (b, m, f, h), (bʹ′, mʹ′, fʹ′, hʹ′)), W satisfies	

–  Every (s, o, p) ∈ b – bʹ′ satisfies ssc rel f	

–  Every (s, o, p) ∈ bʹ′ that does not satisfy ssc rel f is not

in b	

•  Note: “secure” means z0 satisfies ssc rel f	

•  First says every (s, o, p) added satisfies ssc rel f;

second says any (s, o, p) in bʹ′ that does not satisfy
ssc rel f is deleted	

Slide #5	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

*-Property	

•  b(s: p1, …, pn) set of all objects that s has p1, …, pn

access to	

•  State (b, m, f, h) satisfies the *-property iff for each s ∈ S

the following hold:	

1.  b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fo(o) dom fc(s)]]	

2.  b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]	

3.  b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]	

•  Idea: for writing, object dominates subject; for reading,
subject dominates object	

Slide #6	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

*-Property	

•  If all states satisfy simple security condition,
system satisfies simple security condition	

•  If a subset Sʹ′ of subjects satisfy *-property, then
*-property satisfied relative to Sʹ′ ⊆ S 	

•  Note: tempting to conclude that *-property
includes simple security condition, but this is false	

–  See condition placed on w right for each	

Slide #7	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the *-property relative to Sʹ′ ⊆ S for
any secure state z0 iff for every action (r, d, (b, m, f, h), (bʹ′,
mʹ′, fʹ′, hʹ′)), W satisfies the following for every s ∈ Sʹ′	

–  Every (s, o, p) ∈ b – b´ satisfies the *-property relative to Sʹ′	

–  Every (s, o, p) ∈ b´ that does not satisfy the *-property relative to

Sʹ′ is not in b	

•  Note: “secure” means z0 satisfies *-property relative to Sʹ′	

•  First says every (s, o, p) added satisfies the *-property

relative to Sʹ′; second says any (s, o, p) in bʹ′ that does not
satisfy the *-property relative to Sʹ′ is deleted	

Slide #8	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Discretionary Security Property	

•  State (b, m, f, h) satisfies the discretionary

security property iff, for each (s, o, p) ∈ b, then
p ∈ m[s, o]	

•  Idea: if s can read o, then it must have rights to
do so in the access control matrix m	

•  This is the discretionary access control part of
the model	

–  The other two properties are the mandatory access

control parts of the model	

Slide #9	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Necessary and Sufficient	

•  Σ(R, D, W, z0) satisfies the ds-property for any

secure state z0 iff, for every action (r, d, (b, m, f,
h), (bʹ′, mʹ′, fʹ′, hʹ′)), W satisfies:	

–  Every (s, o, p) ∈ b – bʹ′ satisfies the ds-property	

–  Every (s, o, p) ∈ bʹ′ that does not satisfy the ds-property

is not in b	

•  Note: “secure” means z0 satisfies ds-property	

•  First says every (s, o, p) added satisfies the ds-

property; second says any (s, o, p) in bʹ′ that does
not satisfy the *-property is deleted	

Slide #10	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Secure	

•  A system is secure iff it satisfies:	

– Simple security condition	

–  *-property	

– Discretionary security property	

•  A state meeting these three properties is
also said to be secure	

Slide #11	

April 24, 2013	
 ECS 235B Spring Quarter 2013	

Basic Security Theorem	

•  Σ(R, D, W, z0) is a secure system if z0 is a
secure state and W satisfies the conditions
for the preceding three theorems	

– The theorems are on the slides titled

“Necessary and Sufficient”	

Slide #12	

Rule	

•  ρ: R × V → D × V	

•  Takes a state and a request, returns a decision and

a (possibly new) state	

•  Rule ρ ssc-preserving if for all (r, v) ∈ R × V and

v satisfying ssc rel f, ρ(r, v) = (d, vʹ′) means that vʹ′
satisfies ssc rel fʹ′.	

–  Similar definitions for *-property, ds-property	

–  If rule meets all 3 conditions, it is security-preserving	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #13	

Unambiguous Rule Selection	

•  Problem: multiple rules may apply to a request in

a state	

–  if two rules act on a read request in state v …	

•  Solution: define relation W(ω) for a set of rules ω
= { ρ1, …, ρm } such that a state (r, d, vʹ′, v) ∈W(ω)
iff either	

–  d = i; or 	

–  for exactly one integer j, ρj(r, v) = (d, vʹ′)	

•  Either request is illegal, or only one rule applies 	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #14	

Rules Preserving SSC	

•  Let ω be set of ssc-preserving rules. Let state z0

satisfy simple security condition. Then Σ(R, D,
W(ω), z0) satisfies simple security condition	

–  Proof: by contradiction.	

•  Choose (x, y, z) ∈ Σ(R, D, W(ω), z0) as state not satisfying
simple security condition; then choose t ∈ N such that (xt, yt, zt)
is first appearance not meeting simple security condition	

•  As (xt, yt, zt, zt–1) ∈ W(ω), there is unique rule ρ ∈ ω such that
ρ(xt, zt–1) = (yt, zt) and yt ≠ i.	

•  As ρ ssc-preserving, and zt–1 satisfies simple security condition,
then zt meets simple security condition, contradiction.	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #15	

Adding States Preserving SSC	

•  Let v = (b, m, f, h) satisfy simple security condition. Let

(s, o, p) ∉ b, bʹ′ = b ∪ { (s, o, p) }, and vʹ′ = (bʹ′, m, f, h).
Then vʹ′ satisfies simple security condition iff:	

1.  Either p = e or p = a; or	

2.  Either p = r or p = w, and fc(s) dom fo(o)	

–  Proof	

1.  Immediate from definition of simple security condition and vʹ′
satisfying ssc rel f	

2.  vʹ′ satisfies simple security condition means fc(s) dom fo(o), and for
converse, (s, o, p) ∈ bʹ′ satisfies ssc rel f, so vʹ′ satisfies simple
security condition	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #16	

Rules, States Preserving *-
Property	

•  Let ω be set of *-property-preserving rules, state
z0 satisfies *-property. Then Σ(R, D, W(ω), z0)
satisfies *-property	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #17	

Rules, States Preserving ds-
Property	

•  Let ω be set of ds-property-preserving rules, state
z0 satisfies ds-property. Then Σ(R, D, W(ω), z0)
satisfies ds-property	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #18	

Combining	

•  Let ρ be a rule and ρ(r, v) = (d, vʹ′), where v = (b, m, f, h)

and vʹ′ = (bʹ′, mʹ′, fʹ′, hʹ′). Then:	

1.  If bʹ′ ⊆ b, fʹ′ = f, and v satisfies the simple security condition,

then vʹ′ satisfies the simple security condition	

2.  If bʹ′ ⊆ b, fʹ′ = f, and v satisfies the *-property, then vʹ′ satisfies

the *-property	

3.  If bʹ′ ⊆ b, m[s, o] ⊆ mʹ′ [s, o] for all s ∈ S and o ∈ O, and v

satisfies the ds-property, then vʹ′ satisfies the ds-property	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #19	

Proof	

1.  Suppose v satisfies simple security property.	

a)  b´ ⊆ b and (s, o, r) ∈ bʹ′ implies (s, o, r) ∈ b	

b)  b´ ⊆ b and (s, o, w) ∈ bʹ′ implies (s, o, w) ∈ b	

c)  So fc(s) dom fo(o)	

d)  But fʹ′ = f	

e)  Hence fʹ′c(s) dom fʹ′o(o)	

f)  So vʹ′ satisfies simple security condition	

2, 3 proved similarly	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #20	

Example Instantiation: Multics	

•  11 rules affect rights:	

–  set to request, release access	

–  set to give, remove access to different subject	

–  set to create, reclassify objects	

–  set to remove objects	

–  set to change subject security level	

•  Set of “trusted” subjects ST ⊆ S	

–  *-property not enforced; subjects trusted not to violate	

•  Δ(ρ) domain	

–  determines if components of request are valid	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #21	

get-read Rule	

•  Request r = (get, s, o, r)	

–  s gets (requests) the right to read o	

•  Rule is ρ1(r, v):	

if (r ≠ Δ(ρ1)) then ρ1(r, v) = (i, v);	

else if (fs(s) dom fo(o) and [s ∈ ST or fc(s) dom fo(o)]	

	
and r ∈ m[s, o])	

	
 	
 	
then ρ1(r, v) = (y, (b ∪ { (s, o, r) }, m, f, h));	

else ρ1(r, v) = (n, v);	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #22	

Security of Rule	

•  The get-read rule preserves the simple
security condition, the *-property, and the
ds-property	

– Proof	

•  Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ′). If
vʹ′ = v, result is trivial. So let vʹ′ = (b ∪ { (s2, o, r) },
m, f, h).	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #23	

Proof	

•  Consider the simple security condition.	

–  From the choice of vʹ′, either bʹ′ – b = ∅ or { (s2, o, r) }	

–  If bʹ′ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ′, proving

that vʹ′ satisfies the simple security condition.	

–  If bʹ′ – b = { (s2, o, r) }, because the get-read rule

requires that fc(s) dom fo(o), an earlier result says that v ́
satisfies the simple security condition.	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #24	

Proof	

•  Consider the *-property.	

–  Either s2 ∈ ST or fc(s) dom fo(o) from the definition of

get-read 	

–  If s2 ∈ ST, then s2 is trusted, so *-property holds by

definition of trusted and ST.	

–  If fc(s) dom fo(o), an earlier result says that vʹ′ satisfies

the simple security condition.	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #25	

Proof	

•  Consider the discretionary security property.	

–  Conditions in the get-read rule require r ∈ m[s, o] and

either bʹ′ – b = ∅ or { (s2, o, r) }	

–  If bʹ′ – b = ∅, then { (s2, o, r) } ∈ b, so v = vʹ′, proving

that v´ satisfies the simple security condition.	

–  If bʹ′ – b = { (s2, o, r) }, then { (s2, o, r) } ∉ b, an earlier

result says that vʹ′ satisfies the ds-property.	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #26	

give-read Rule	

•  Request r = (s1, give, s2, o, r)	

–  s1 gives (request to give) s2 the (discretionary) right to read o	

–  Rule: can be done if giver can alter parent of object	

•  If object or parent is root of hierarchy, special authorization required	

•  Useful definitions	

–  root(o): root object of hierarchy h containing o	

–  parent(o): parent of o in h (so o ∈ h(parent(o)))	

–  canallow(s, o, v): s specially authorized to grant access when

object or parent of object is root of hierarchy	

–  m∧m[s, o]←r: access control matrix m with r added to m[s, o]	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #27	

give-read Rule	

•  Rule is ρ6(r, v):	

if (r ≠ Δ(ρ6)) then ρ6(r, v) = (i, v);	

else if ([o ≠ root(o) and parent(o) ≠ root(o) and
	
 	
 	
 	
 	
parent(o) ∈ b(s1:w)] or	

	
[parent(o) = root(o) and canallow(s1, o, v)] or	

	
[o = root(o) and canallow(s1, o, v)])	

	
 	
 	
then ρ6(r, v) = (y, (b, m∧m[s2, o] ← r, f, h));	

else ρ1(r, v) = (n, v);	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #28	

Security of Rule	

•  The give-read rule preserves the simple security
condition, the *-property, and the ds-property	

–  Proof: Let v satisfy all conditions. Let ρ1(r, v) = (d, vʹ′).

If v´ = v, result is trivial. So let vʹ′ = (b, m[s2, o]←r, f, h).
So bʹ′ = b, fʹ′ = f, m[x, y] = mʹ′ [x, y] for all x ∈ S and y ∈
O such that x ≠ s and y ≠ o, and m[s, o] ⊆ mʹ′[s, o]. Then
by earlier result, vʹ′ satisfies the simple security
condition, the *-property, and the ds-property.	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #29	

Principle of Tranquility	

•  Raising object’s security level	

–  Information once available to some subjects is no
longer available	

–  Usually assume information has already been accessed,
so this does nothing	

•  Lowering object’s security level	

–  The declassification problem	

–  Essentially, a “write down” violating *-property	

–  Solution: define set of trusted subjects that sanitize or

remove sensitive information before security level
lowered	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #30	

Types of Tranquility	

•  Strong Tranquility	

–  The clearances of subjects, and the classifications of

objects, do not change during the lifetime of the system	

•  Weak Tranquility	

–  The clearances of subjects, and the classifications of
objects, do not change in a way that violates the simple
security condition or the *-property during the lifetime
of the system	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #31	

Example of Weak Tranquility	

•  Only one subject at TOP SECRET	

•  Document at CONFIDENTIAL	

•  New CONFIDENTIAL user to be added	

– User should not see document	

•  Raise document to SECRET	

– Subject still cannot write document	

– All security relationships unchanged	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #32	

Declassification 	

•  Lowering the security level of a document	

– Direct violation of the “no writes down” rule	

– May be necessary for legal or other purposes	

•  Declassification policy	

– Part of security policy covering this	

– Here, “secure” means classification changes to

a lower level in accordance with
declassification policy	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #33	

Principles	

•  Principle of Semantic Consistency	

– You can change parts of a system not involved

in declassification without affecting security	

•  Principle of Occlusion	

– Declassification cannot conceal improper
lowering of security levels	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #34	

Principles	

•  Principle of Conservativity	

– Absent any declassification, the system is

secure	

•  Principle of Monotonicity of Release	

– Declassifying information in accordance with
the declassification policy does not make the
system less secure	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #35	

Principle of Semantic
Consistency	

•  As long as the semantics of the parts of the
system not involved in the declassification
do not change, those parts may be changed
without affecting system security	

– No leaking due to semantic incompatibilities	

– Delimited release: allow declassification,

release of information only through specific
channels (“escape hatches”)	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #36	

Principle of Occlusion	

•  Declassification mechanism cannot conceal
improper lowering of security levels	

– Robust declassification property: attacker

cannot use escape hatches to obtain information
unless it is properly declassified	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #37	

Other Principles	

•  Principle of Conservativity 	

–  Absent declassification, system is secure	

•  Principle of Monotonicity of Release	

–  When declassification is performed in an

authorized manner by authorized subjects, the
system remains secure	

Idea: declassifying information in accordance
with declassification policy does not affect
security	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #38	

Controversy	

•  McLean:	

–  “value of the BST is much overrated since there

is a great deal more to security than it captures.
Further, what is captured by the BST is so
trivial that it is hard to imagine a realistic
security model for which it does not hold.”	

– Basis: given assumptions known to be non-
secure, BST can prove a non-secure system to
be secure	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #39	

†-Property	

•  State (b, m, f, h) satisfies the †-property iff for each s ∈ S

the following hold:	

1.  b(s: a) ≠ ∅ ⇒ [∀o ∈ b(s: a) [fc(s) dom fo(o)]]	

2.  b(s: w) ≠ ∅ ⇒ [∀o ∈ b(s: w) [fo(o) = fc(s)]]	

3.  b(s: r) ≠ ∅ ⇒ [∀o ∈ b(s: r) [fc(s) dom fo(o)]]	

•  Idea: for writing, subject dominates object; for reading,
subject also dominates object	

•  Differs from *-property in that the mandatory condition for
writing is reversed	

–  For *-property, it’s object dominates subject	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #40	

Analogues	

The following two theorems can be proved	

•  Σ(R, D, W, z0) satisfies the †-property relative to Sʹ′ ⊆ S for

any secure state z0 iff for every action (r, d, (b, m, f, h),
(bʹ′, mʹ′, fʹ′, hʹ′)), W satisfies the following for every s ∈ S´	

–  Every (s, o, p) ∈ b – bʹ′ satisfies the †-property relative to Sʹ′	

–  Every (s, o, p) ∈ bʹ′ that does not satisfy the †-property relative to

Sʹ′ is not in b	

•  Σ(R, D, W, z0) is a secure system if z0 is a secure state and

W satisfies the conditions for the simple security condition,
the †-property, and the ds-property.	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #41	

Problem	

•  This system is clearly non-secure!	

–  Information flows from higher to lower because

of the †-property	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #42	

Discussion	

•  Role of Basic Security Theorem is to demonstrate

that rules preserve security	

•  Key question: what is security?	

–  Bell-LaPadula defines it in terms of 3 properties
(simple security condition, *-property, discretionary
security property)	

–  Theorems are assertions about these properties	

–  Rules describe changes to a particular system

instantiating the model	

–  Showing system is secure requires proving rules

preserve these 3 properties	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #43	

Rules and Model	

•  Nature of rules is irrelevant to model	

•  Model treats “security” as axiomatic	

•  Policy defines “security”	

–  This instantiates the model	

–  Policy reflects the requirements of the systems	

•  McLean’s definition differs from Bell-LaPadula	

–  … and is not suitable for a confidentiality policy	

•  Analysts cannot prove “security” definition is
appropriate through the model	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #44	

System Z	

•  System supporting weak tranquility	

•  On any request, system downgrades all

subjects and objects to lowest level and
adds the requested access permission	

– Let initial state satisfy all 3 properties	

– Successive states also satisfy all 3 properties	

•  Clearly not secure	

– On first request, everyone can read everything	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #45	

Reformulation of Secure Action	

•  Given state that satisfies the 3 properties,
the action transforms the system into a state
that satisfies these properties and eliminates
any accesses present in the transformed
state that would violate the property in the
initial state, then the action is secure	

•  BST holds with these modified versions of
the 3 properties	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #46	

Reconsider System Z	

•  Initial state:	

–  subject s, object o	

–  C = {High, Low}, K = {All}	

•  Take:	

–  fc(s) = (Low, {All}), fo(o) = (High, {All})	

–  m[s, o] = { w }, and b = { (s, o, w) }.	

•  s requests r access to o	

•  Now:	

–  fʹ′o(o) = (Low, {All})	

–  (s, o, r) ∈ bʹ′, mʹ′ [s, o] = {r, w}	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #47	

Non-Secure System Z	

•  As (s, o, r) ∈ bʹ′ – b and fo(o) dom fc(s),
access added that was illegal in previous
state	

– Under the new version of the Basic Security

Theorem, System Z is not secure	

– Under the old version of the Basic Security

Theorem, as fʹ′c(s) = fʹ′o(o), System Z is secure	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #48	

Response: What Is Modeling?	

•  Two types of models	

1.  Abstract physical phenomenon to

fundamental properties	

2.  Begin with axioms and construct a structure

to examine the effects of those axioms	

•  Bell-LaPadula Model developed as a model

in the first sense	

–  McLean assumes it was developed as a

model in the second sense	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #49	

Reconciling System Z	

•  Different definitions of security create
different results	

– Under one (original definition in Bell-LaPadula

Model), System Z is secure	

– Under other (McLean’s definition), System Z is

not secure	

April 24, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #50	

