Lecture #11

- Bell-LaPadula model
	- Formal: more mathematical one (but still a lattice!)

Basic Security Theorem

- Define action, secure formally – Using a bit of foreshadowing for "secure"
- Restate properties formally
	- Simple security condition
	- *-property
	- Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

• A request and decision that causes the system to move from one state to another

– Final state may be the same as initial state

- $(r, d, v, v') \in R \times D \times V \times V$ is an *action* of $\Sigma(R, D, v')$ *W*, *z*₀) iff there is an $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_t, z_{t-1})$
	- Request *r* made when system in state *v*; decision *d* moves system into (possibly the same) state *v*^ʹ
	- $-$ Correspondence with (x_t, y_t, z_t, z_{t-1}) makes states, requests, part of a sequence

Simple Security Condition

• $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to *f* (written *ssc rel f*) iff one of the following holds:

1.
$$
p = \underline{e}
$$
 or $p = \underline{a}$

- 2. $p = r$ or $p = w$ and $f_s(s)$ *dom* $f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of *b* satisfy *ssc rel f*, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

April 24, 2013 *ECS 235B Spring Quarter 2013*

Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action (*r*, *d*, (*b*, *m*, *f*, *h*), (*b*^ʹ , *m*^ʹ , *f*^ʹ , *h*ʹ)), *W* satisfies

– Every $(s, o, p) \in b - b'$ satisfies *ssc rel f*

- $-$ Every $(s, o, p) \in b'$ that does not satisfy *ssc relf* is not in *b*
- Note: "secure" means z_0 satisfies *ssc relf*
- First says every (*s*, *o*, *p*) added satisfies *ssc rel f*; second says any (s, o, p) in b' that does not satisfy *ssc rel f* is deleted

*-Property

- $b(s: p_1, \ldots, p_n)$ set of all objects that *s* has p_1, \ldots, p_n access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
	- 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]]$
	- 2. $b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) [f_o(o) = f_c(s)]]$
	- 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset *S'* of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
	- See condition placed on w right for each

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b',$ $m\prime$, $f\prime$, $h\prime$), *W* satisfies the following for every $s \in S'$
	- Every $(s, o, p) \in b b'$ satisfies the ^{*}-property relative to *S*[′]
	- Every $(s, o, p) \in b^*$ that does not satisfy the ^{*}-property relative to *S*^ʹ is not in *b*
- Note: "secure" means z_0 satisfies *-property relative to S'
- First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in *b*' that does not satisfy the *-property relative to *S*ʹ is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if *s* can read *o*, then it must have rights to do so in the access control matrix *m*
- This is the discretionary access control part of the model
	- The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f,$ *h*), (b', m', f', h') , *W* satisfies:
	- $-$ Every $(s, o, p) \in b b'$ satisfies the ds-property
	- $-$ Every $(s, o, p) \in b'$ that does not satisfy the ds-property is not in *b*
- Note: "secure" means z_0 satisfies ds-property
- First says every (*s*, *o*, *p*) added satisfies the dsproperty; second says any (s, o, p) in b' that does not satisfy the *-property is deleted

Secure

- A system is secure iff it satisfies:
	- Simple security condition
	- *-property
	- Discretionary security property
- A state meeting these three properties is also said to be secure

Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and *W* satisfies the conditions for the preceding three theorems
	- The theorems are on the slides titled "Necessary and Sufficient"

Rule

- \bullet $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ *ssc-preserving* if for all $(r, v) \in R \times V$ and *v* satisfying *ssc rel f*, $\rho(r, v) = (d, v')$ means that *v'* satisfies *ssc rel f*ʹ.
	- Similar definitions for *-property, ds-property
	- If rule meets all 3 conditions, it is *security-preserving*

Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state

– if two rules act on a read request in state *v …*

- Solution: define relation $W(\omega)$ for a set of rules ω $= \{ \rho_1, \ldots, \rho_m \}$ such that a state $(r, d, v', v) \in W(\omega)$ iff either
	- $-d = i$; or
	- $-$ for exactly one integer *j*, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies

Rules Preserving *SSC*

- Let ω be set of *ssc*-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, D)$ $W(\omega)$, z_0) satisfies simple security condition
	- Proof: by contradiction.
		- Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
		- As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq \underline{i}$.
		- As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.

Adding States Preserving *SSC*

- Let $v = (b, m, f, h)$ satisfy simple security condition. Let $(s, o, p) \notin b, b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then *v*' satisfies simple security condition iff:
	- 1. Either $p = e$ or $p = a$; or
	- 2. Either $p = r$ or $p = w$, and $f_c(s)$ *dom* $f_o(o)$
	- Proof
		- 1. Immediate from definition of simple security condition and *v*^ʹ satisfying *ssc rel f*
		- 2. *v*' satisfies simple security condition means $f_c(s)$ *dom* $f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies *ssc relf*, so *v*' satisfies simple security condition

Rules, States Preserving *- Property

Let ω be set of *-property-preserving rules, state *z*₀ satisfies *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property

Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state *z*₀ satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property

Combining

- Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m')$ $\langle f, h \rangle$. Then:
	- 1. If $b' \subseteq b, f' = f$, and *v* satisfies the simple security condition, then v' satisfies the simple security condition
	- 2. If $b' \subseteq b, f' = f$, and *v* satisfies the *-property, then *v*' satisfies the *-property
	- 3. If $b' \subseteq b$, $m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property

- 1. Suppose *v* satisfies simple security property.
	- a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
	- b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
	- c) So $f_c(s)$ *dom* $f_o(o)$
	- d) But $f' = f$
	- e) Hence $f'_c(s)$ *dom* $f'_o(o)$
	- f) So *v*['] satisfies simple security condition

2, 3 proved similarly

Example Instantiation: Multics

- 11 rules affect rights:
	- set to request, release access
	- set to give, remove access to different subject
	- set to create, reclassify objects
	- set to remove objects
	- set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
	- *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
	- determines if components of request are valid

April 24, 2013 *ECS 235B Spring Quarter 2013* Slide #21

get-read Rule

• Request $r = (get, s, o, r)$

– *s* gets (requests) the right to read *o*

• Rule is $\rho_1(r, v)$: **if** $(r \neq \Delta(\rho_1))$ **then** $\rho_1(r, v) = (i, v);$ **else if** ($f_s(s)$ *dom* $f_o(o)$ **and** [$s \in S_T$ **or** $f_c(s)$ *dom* $f_o(o)$] and $r \in m[s, o]$

then $\rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h));$ **else** $\rho_1(r, v) = (n, v);$

April 24, 2013 *ECS 235B Spring Quarter 2013* Slide #22

Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
	- Proof
		- Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b \cup \{ (s_2, o, \underline{r}) \},$ *m*, *f*, *h*).

- Consider the simple security condition.
	- $-$ From the choice of *v'*, either $b' b = \emptyset$ or { (s_2 , o , <u>r</u>) }
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, because the *get-read* rule requires that $f_c(s)$ *dom* $f_o(o)$, an earlier result says that *v* satisfies the simple security condition.

- Consider the *-property.
	- Either *s*₂ ∈ *S_T* or *f_c*(*s*) *dom f_o*(*o*) from the definition of *get-read*
	- If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
	- $-$ If $f_c(s)$ *dom* $f_o(o)$, an earlier result says that *v*' satisfies the simple security condition.

- Consider the discretionary security property.
	- Conditions in the *get-read* rule require $r \in m[s, o]$ and either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that *v*´ satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, then $\{ (s_2, o, r) \} \notin b$, an earlier result says that *v*' satisfies the ds-property.

give-read Rule

- Request $r = (s_1, give, s_2, o, r)$
	- $-$ *s*₁ gives (request to give) *s*₂ the (discretionary) right to read *o*
	- Rule: can be done if giver can alter parent of object
		- If object or parent is root of hierarchy, special authorization required
- Useful definitions
	- *root*(*o*): root object of hierarchy *h* containing *o*
	- *parent*(*o*): parent of *o* in *h* (so *o* ∈ *h*(*parent*(*o*)))
	- *canallow*(*s*, *o*, *v*): *s* specially authorized to grant access when object or parent of object is root of hierarchy
	- *m*∧*m*[*s*, *o*]←r: access control matrix *m* with radded to *m*[*s*, *o*]

give-read Rule

\n- \n Rule is
$$
\rho_6(r, v)
$$
:\n
	\n- \n if $(r \neq \Delta(\rho_6))$ then $\rho_6(r, v) = (i, v)$;\n else if $([o \neq root(o) \text{ and } parent(o) \neq root(o) \text{ and } parent(o) \in b(s_1 : \underline{w})]$ or\n
	\n- \n [parent(o) = root(o) and canallow(s_1, o, v)] or\n
	\n- \n [o = root(o) and canallow(s_1, o, v)]\n
	\n- \n then $\rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow \underline{r}, f, h))$;\n
	\n\n
\n- \n else $\rho_1(r, v) = (\underline{n}, v)$;\n
\n

April 24, 2013 *ECS 235B Spring Quarter 2013* Slide #28

Security of Rule

- The *give-read* rule preserves the simple security condition, the *-property, and the ds-property
	- $-$ Proof: Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b, m[s_2, o] \leftarrow r, f, h)$. So $b' = b$, $f' = f$, $m[x, y] = m'[x, y]$ for all $x \in S$ and $y \in S$ *O* such that $x \neq s$ and $y \neq o$, and $m[s, o] \subseteq m[s, o]$. Then by earlier result, v' satisfies the simple security condition, the *-property, and the ds-property.

Principle of Tranquility

- Raising object's security level
	- Information once available to some subjects is no longer available
	- Usually assume information has already been accessed, so this does nothing
- Lowering object's security level
	- The *declassification problem*
	- Essentially, a "write down" violating *-property
	- Solution: define set of trusted subjects that *sanitize* or remove sensitive information before security level lowered

Types of Tranquility

- Strong Tranquility
	- The clearances of subjects, and the classifications of objects, do not change during the lifetime of the system
- Weak Tranquility
	- The clearances of subjects, and the classifications of objects, do not change in a way that violates the simple security condition or the *-property during the lifetime of the system

Example of Weak Tranquility

- Only one subject at TOP SECRET
- Document at CONFIDENTIAL
- New CONFIDENTIAL user to be added
	- User should not see document
- Raise document to **SECRET**
	- Subject still cannot write document
	- All security relationships unchanged

Declassification

- Lowering the security level of a document
	- Direct violation of the "no writes down" rule
	- May be necessary for legal or other purposes
- Declassification policy
	- Part of security policy covering this
	- Here, "secure" means classification changes to a lower level in accordance with declassification policy

Principles

- Principle of Semantic Consistency
	- You can change parts of a system not involved in declassification without affecting security
- Principle of Occlusion
	- Declassification cannot conceal *improper* lowering of security levels

Principles

- Principle of Conservativity
	- Absent any declassification, the system is secure
- Principle of Monotonicity of Release
	- Declassifying information *in accordance with the declassification policy* does not make the system less secure

Principle of Semantic **Consistency**

- As long as the semantics of the parts of the system not involved in the declassification do not change, those parts may be changed without affecting system security
	- No leaking due to semantic incompatibilities
	- *Delimited release*: allow declassification, release of information only through specific channels ("escape hatches")

Principle of Occlusion

- Declassification mechanism cannot conceal *improper* lowering of security levels
	- Robust declassification property: attacker cannot use escape hatches to obtain information unless it is properly declassified

Other Principles

- Principle of Conservativity
	- Absent declassification, system is secure
- Principle of Monotonicity of Release
	- When declassification is performed in an authorized manner by authorized subjects, the system remains secure
- Idea: declassifying information in accordance with declassification policy does not affect security

Controversy

- McLean:
	- "value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold."
	- Basis: given assumptions known to be nonsecure, BST can prove a non-secure system to be secure

†-Property

• State (b, m, f, h) satisfies the †-property iff for each $s \in S$ the following hold:

1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_c(s) \text{ dom } f_o(o)]]$

2.
$$
b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]
$$

3. $b(s: \underline{\mathbf{r}}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{\mathbf{r}}) [f_c(s) \text{ dom } f_o(o)]]$

- Idea: for writing, subject dominates object; for reading, subject also dominates object
- Differs from *-property in that the mandatory condition for writing is reversed
	- For *-property, it's object dominates subject

Analogues

The following two theorems can be proved

- $\Sigma(R, D, W, z_0)$ satisfies the †-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h))$, (b', m', f', h') , *W* satisfies the following for every $s \in S'$
	- − Every $(s, o, p) \in b b'$ satisfies the †-property relative to S'
	- Every (s, o, p) ∈ *b*^{\prime} that does not satisfy the †-property relative to *S*^ʹ is not in *b*
- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and *W* satisfies the conditions for the simple security condition, the †-property, and the ds-property.

Problem

- This system is *clearly* non-secure!
	- Information flows from higher to lower because of the †-property

Discussion

- Role of Basic Security Theorem is to demonstrate that rules preserve security
- Key question: what is security?
	- Bell-LaPadula defines it in terms of 3 properties (simple security condition, *-property, discretionary security property)
	- Theorems are assertions about these properties
	- Rules describe changes to a *particular* system instantiating the model
	- Showing system is secure requires proving rules preserve these 3 properties

Rules and Model

- Nature of rules is irrelevant to model
- Model treats "security" as axiomatic
- Policy defines "security"
	- This instantiates the model
	- Policy reflects the requirements of the systems
- McLean's definition differs from Bell-LaPadula – … and is not suitable for a confidentiality policy
- Analysts cannot prove "security" definition is appropriate through the model

System Z

- System supporting weak tranquility
- On *any* request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
	- Let initial state satisfy all 3 properties
	- Successive states also satisfy all 3 properties
- Clearly not secure
	- On first request, everyone can read everything

Reformulation of Secure Action

- Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure
- BST holds with these modified versions of the 3 properties

Reconsider System Z

- Initial state:
	- subject *s*, object *o*
	- $-C = {High, Low}, K = {All}$
- Take:
	- $f_c(s) = (Low, {All}), f_o(o) = (High, {All})$
	- $-m[s, o] = \{ w \}$, and $b = \{ (s, o, w) \}$.
- *s* requests <u>r</u> access to *o*
- Now:

$$
- f'_{o}(o) = (\text{Low}, \{\text{All}\})
$$

- (s, o, **r**) $\in b'$, $m'[s, o] = {\underline{r}, \underline{w}}$
April 24, 2013
ECS 235B Spring Quarterly 2013 Slide #47

Non-Secure System Z

- As $(s, o, r) \in b' b$ and $f_o(o)$ *dom* $f_c(s)$, access added that was illegal in previous state
	- Under the new version of the Basic Security Theorem, System Z is not secure
	- Under the old version of the Basic Security Theorem, as $f'_c(s) = f'_o(o)$, System Z is secure

Response: What Is Modeling?

- Two types of models
	- 1. Abstract physical phenomenon to fundamental properties
	- 2. Begin with axioms and construct a structure to examine the effects of those axioms
- Bell-LaPadula Model developed as a model in the first sense
	- McLean assumes it was developed as a model in the second sense

Reconciling System Z

- Different definitions of security create different results
	- Under one (original definition in Bell-LaPadula Model), System Z is secure
	- Under other (McLean's definition), System Z is not secure