Lecture 16

* Policy composition approaches

* Noninterference
— Access control matrix interpretation
* Policy composition

— Composing noninterfering machines may not
produce a noninterfering machine!

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #1

Model

e System as state machine
— Subjects S ={ s; }
— States2={0; }
— Outputs O={ o, }
— Commands Z={z }
— State transition commands C =S x Z

e Note: no inputs

— Encode either as selection of commands or in state transition
commands

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #2

Functions

e State transition function 7: Cx2>—2X

— Describes effect of executing command ¢ 1n
state O

e Output function P: Cx2—0

— QOutput of machine when executing command ¢
in state O

 Initial state is O,

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #3

Example

e Users Heidi (high), Lucy (low)

e 2 bits of state, H (high) and L (Iow)
— System state 1s (H, L) where H, L are 0, 1

e 2 commands: xor,, xor, do xor with 0, 1

— Operations affect both state bits regardless of
whether Heidi or Lucy 1ssues it

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #4

Example: 2-bit Machine

e S ={ Heidi, Lucy }

* 2=1{(00),(0,1),(1,0),(,1) }
o C={xory,xor; }

xor0

xorl

Input States (H, L)

(0,0) 0,1) (1,0) (1,1)
(0,0) 0,1) (1,0) (1,1)
(1,1) (1,0) 0,1) (0,0)

May 6,2013

ECS 235B Spring Quarter 2013

Slide #5

Outputs and States

e T'1s inductive 1n first argument, as
I(cy, 0y) = Oy; T(cyyy5 Oppy) = T(cy,1(c;,07)

e Let C* be set of possible sequences of
commands 1n C

o T*: C*xZ—2X and
c,=cy...Cc, = T%(c,,0,) =1(c,,...,1(cy,0,)...)

e P similar; define P* similarly

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #6

Projection

* T%(c,,0,) sequence of state transitions

* P*(c,,0;) corresponding outputs

* proj(s, c, O;) set of outputs in P*(c,,0,) that
subject s authorized to see

— In same order as they occur in P*(c,0,)
— Projection of outputs for s

e Intuition: list of outputs after removing
outputs that s cannot see

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #7

Purge

e GC S, G a group of subjects
e AC Z, A aset of commands

* 1t.(c,) subsequence of ¢, with all elements
(5,2), s € G deleted

* 1,(c,) subsequence of ¢, with all elements
(5,2), 7 € A deleted

* 7 4(c,) subsequence of ¢, with all elements
(s,2),s € G and z € A deleted

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #8

Example: 2-bit Machine

e Leto,=(0,1)
e 3 commands applied:
— Heidi applies xor,,
— Lucy applies xor,
— Heidi applies xor,
* ¢, = ((Heid,xor,), (Lucy, xor,), (Heidi, xor))
 QOutputis 011001
— Shorthand for sequence (0,1)(1,0)(0,1)

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #9

Example

e proj(Heidi, c,, 0,) = 011001

* proj(Lucy, c,, 0,) = 101

S

* 7. (c,) = ((Heidi, xor), (Heidi, xor)))
* T ey rori(€5) = ((Heidt, xory), (Heidi, xor)))

* .. () = ((Lucy, xor,))

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #10

Example

* T ey Loro(Cy) = ((He1di, xor,), (Lucy, xor),
(Heidi, xor,))

° J-lsHeidi,xorO(Cs) = JtxorO(Cs) = ((Lucy9 x0T 1)’
(Heidi, xor,))

. nHeidi,xo,,l(cS) = ((Heidi, xor,), (Lucy, xor,))
e t..(c,)=((Heidi, xor,))

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #11

Noninterference

e Intuition: Set of outputs Lucy can see corresponds
to set of inputs she can see, there is no interference

e Formally: G,G'CS,G#G';AC Z; Usersin G
executing commands in A are noninterfering with
users in G' iff for all ¢, € C*, and for all s € G,

pl"Oj(S, Csa Oi) =pl"0j(S, nGA(CS)a Oi)
— Written A,G :| G

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #12

Example

e Let c, = ((Heidi, xor,), (Lucy, xor,), (Heid1, xor,))
and o, = (0, 1)

e Take G={Heidi },G'={Lucy }, A=

* TTy.q(c,) = ((Lucy, xor,))
— So proj(Lucy, my;g(c,), 0p) =0

e proj(Lucy, c,, 0y) = 101

e So{ Heidi } :I { Lucy } 1s false

— Makes sense; commands 1ssued to change H bit also
affect L bit

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #13

Example

e Same as before, but Heidi’s commands affect H
bit only, Lucy’s the L bit only

 Outputis 00,1,
* Tyeiai(cy) = (Lucy xorl))
— So proj(Lucy, my;g(c,), 0p) =0
e proj(Lucy, c,, 0y) =0
e So { Heidi } :I { Lucy } 1s true

— Makes sense; commands 1ssued to change H bit now do
not affect L bit

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #14

Security Policy

e Partitions systems into authorized,
unauthorized states

e Authorized states have no forbidden
interferences

 Hence a security policy 1s a set of
noninterference assertions

— See previous definition

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #15

Alternative Development

e System X 1s a set of protection domains
D={d,,....,d,}

e When command ¢ executed, it 1S executed
in protection domain dom(c)

e (Gi1ve alternate versions of definitions shown
previously

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #16

Output-Consistency

e c&€(C,dom(c)ED
o ~dom(c) equivalence relation on states of system X
o ~dom(©) output-consistent if

o, ~%m) g, = P(c,0,) = P(c, 0})

e Intuition: states are output-consistent if for subjects in
dom(c), projections of outputs for both states after ¢ are the
same

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #17

Security Policy

e D={d,,...,d, },d. aprotection domain
e r: DxD areflexive relation
 Then r defines a security policy

e Intuition: defines how information can flow
around a system

— d;rd; means info can flow from d; to d,

— drd; as info can flow within a domain

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #18

Projection Function

e 7' analogue of m, earlier

 Commands, subjects absorbed 1nto protection
domains

e deD,ceC,c,eC*

e ' (V)=V

e ' (c,c) =7 [c))c if dom(c)rd

e ' (c,c)=m'/c,) otherwise

e Intuition: if executing ¢ interferes with d, then c 1s
visible; otherwise, as if ¢ never executed

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #19

Noninterference-Secure

e System has set of protection domains D

e System is noninterference-secure with respect to policy r if
P*(c, T*(c,, 0y)) = P*(c, T*(x' (c,), Oy))

* Intuition: if executing c, causes the same transitions for

subjects 1n domain d as does its projection with respect to
domain d, then no information flows 1n violation of the

policy

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #20

LLemma

e Let T*(c,, 0,) ~4 T*(xt' (c.), 0,) for ¢ € C

o If ~d output-consistent, then system is
noninterference-secure with respect to
policy r

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #21

Proof

e d=dom(c)forcEe C
* By definition of output-consistent,
T*(c,, 0y) ~* T*(' [(c,), Op)
implies
P*(c,T*(c,, 0y)) = P*(c,T*(x' (c,), Oy))

e This 1s definition of noninterference-secure
with respect to policy r

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #22

Unwinding Theorem

* Links security of sequences of state
transition commands to security of
individual state transition commands

e Allows you to show a system design 1s ML
secure by showing it matches specs from
which certain lemmata derived

— Says nothing about security of system, because
of implementation, operation, efc. 1Ssues

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #23

Locally Respects

e r1is apolicy

e System X locally respects r if dom(c) being
noninterfering with d € D implies o, ~ T(c,
o,)

e Intuition: applying ¢ under policy r to
system X has no effect on domain d when X
locally respects r

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #24

Transition-Consistent

e rpolicy,de D

e If o, ~4 0o, implies T(c, o)~ T(c, T,),
system X transition-consistent under r

* Intuition: command c does not affect
equivalence of states under policy r

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #25

LLemma

e c,c,€C,deED
* For policy r, dom(c,)rd and dom(c,)rd
e Then
T*(c,c,,0) = 1(c,,I1(c,,0)) = T(c,,1(c,,0))

e Intuition: if info can flow from domains of
commands into d, then order doesn’t atfect
result of applying commands

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #26

Theorem

e 7 policy, X system that is output consistent,
transition consistent, locally respects r

e X noninterference-secure with respect to policy r
e Significance: basis for analyzing systems claiming

to enforce noninterference policy

— Establish conditions of theorem for particular set of
commands, states with respect to some policy, set of
protection domains

— Noninterference security with respect to r follows

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #27

Proof

* Must show 0, ~¢ o, implies
T*(c,,0,) ~ T*(@ [(c,), O))
* Induct on length of c,
e Basis: ¢, =v,s0 T*(c,,0) =0; ' (V) =V;
claim holds

* Hypothesis: ¢, =c¢, ... ¢,; then claim holds

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #28

Induction Step

» Consider c.c,,,. Assume o, ~¢ 0, and look
at T*(«t' (c,c,, (), Op)

e) cases:
— dom(c,,,)rd holds
— dom(c, ,)rd does not hold

n+l1

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #29

dom(c,,,)rd Holds

T*(n’d(cscnﬂ)’ Ob) = T*(ﬂ:,d(cs)Cn+1’ O‘b)

= T(Cpuy, T (C), OF))
— by definition of 7* and 7’

d
* T(Cn+1’ Oa) ~ T(Cn+1’ Gb)
— as X transition-consistent and o, ~¢ O,

° T(Cn+1 9T>X<(CS 9Oa))~dT(Cn+1 aT* (J—c,d(cs)a Ob))

— by transition-consistency and IH

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #30

dom(c,,,)rd Holds

T(Cn+1 ’T*(Cs ’Oa))NdT(CnH ’T* (n,d(cs)Cn+1 ’ Gb))
— by substitution from earlier equality

T(Cn+1 ’T*(Cs ’Oa))NdT(CnH ’T* (n,d(cs)Cn+1 ’ Gb))
— by definition of T

e proving hypothesis

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #31

dom(c,,)rd Does Not Hold

T*(ﬂ:,d(cscrﬁl)a Ob) — T*(ﬂ:,d(cs)9 Ob)
— by definition of ',
T*(CS’ Ob) = T*(Tr’,d(cscn+1)’ Ob)
— by above and IH
T(c 1> TH(cy, 0,) ~* T*(cy, O,)
— as X locally respects r, so o ~¢ T(c,, , O) for any ©
T(Cn+1 ’T*(CS ’Oa))NdT(Cn+1 ’T* (Tc,d(cs)Cn+1 ’ Ob))
— substituting back
e proving hypothesis

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #32

Finishing Proof

 Take 0, =0, = 0, so from claim proved by
induction,

T*(c,, Op) ~ T (c,), Oy)
e By previous lemma, as X (and so ~%) output

consistent, then X 1s noninterference-secure
with respect to policy r

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #33

Access Control Matrix

 Example of interpretation
e (G1ven: access control information

e Question: are given conditions enough to
provide noninterference security?

e Assume: system in a particular state

— Encapsulates values in ACM

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #34

ACM Model

e Objects L={1,,...,L, }

— Locations in memory
* Values V={v,,....,v, }

— Values that L can assume
* Setof states2={0,...,0; }
e Set of protection domains D ={d,, ..., d; }

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #35

Functions

e value: Lx>—V

— returns value v stored in location [when system in state o
e read: D—2V

— returns set of objects observable from domain d
o write: D—2V

— returns set of objects observable from domain d

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #36

Interpretation of ACM

* Functions represent ACM
— Subject s in domain d, object o

— rE€ Als, o] if o E read(d)
— wE Al[s, o] if o € write(d)
* Equivalence relation:
(o, ~dom©) g,]<>[VI, € read(d)
| value(l,, 6,) = value(l;, 0,)]]

— You can read the exactly the same locations in both
states

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #37

Enforcing Policy r

e 5 requirements

— 3 general ones describing dependence of
commands on rights over input and output

e Hold for all ACMs and policies
— 2 that are specific to some security policies

e Hold for most policies

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #38

Enforcing Policy r: First

e Output of command c executed in domain
dom(c) depends only on values for which
subjects in dom(c) have read access

o, ~dm) g, = P(c,0,) = P(c, 0,)

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #39

Enforcing Policy r: Second

e If c changes [, then ¢ can only use values of
objects 1n read(dom(c)) to determine new
value
[o, ~4m) G, and

(value(l., T(c, 0,)) # value(l., ©,) or
value(l,, T(c, 0,)) # value(l,, 0,)) | =
value(l., T(c, 0,)) = value(l., T(c, 0}))

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #40

Enforcing Policy r: Third

* If c changes [;, then dom(c) provides subject
executing ¢ with write access to /,

value(l., T(c, 0,)) # value(l;, o)) =
[. € write(dom(c))

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #41

Enforcing Policies r: Fourth

e If domain u can interfere with domain v,
then every object that can be read in u can
also be read 1n v

* So 1f object o cannot be read 1n u, but can be
read in v; and object 0’ in u can be read in v,
then info flows from o to o', then to v

Let u, v € D; then urv = read(u) C read(v)

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #42

Enforcing Policies r: Fifth

e Subject s can write object o in v, subject s’
can read o 1n u, then domain v can interfere
with domain u

[. € read(u) and [. € write(v) = vru

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #43

Theorem

e Let X be a system satistying the five
conditions. The X 1S noninterference-secure
with respect to r

* Proof: must show X output-consistent,
locally respects r, transition-consistent

— Then by unwinding theorem, theorem holds

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #44

Output-Consistent

e Take equivalence relation to be ~¢, first
condition is definition of output-consistent

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #45

Locally Respects r

e Proof by contradiction: assume (dom(c), d) & r but
o, ~*T(c, 0,) does not hold

 Some object has value changed by c:
3. € read(d) [value(l,, o) # value(l,, T(c, 0,)))]
e Condition 3: [, € write(d)
e Condition 5: dom(c)rd, contradiction
e Soo,~*T(c,o,) holds, meaning X locally respects r

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #46

Transition Consistency

e Assume 0, ~% O,
* Must show
value(/,, T(c, 6,)) = value(l., T(c, G,))
for [. € read(d)

e 3 cases dealing with change that ¢ makes 1n
[. 1n states O, O,

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #47

Case 1

* value(l;, T(c, 0,)) # value(l;, 0,)
e Condition 3: [. € write(dom(c))
* As !l €read(d),condition 5 says dom(c)rd
e Condition 4 says read(dom(c)) C read(d)
* Aso,~o,,0, ~m) g
e Condition 2:
value(l;, T(c, 0,)) = value(l,, T(c, G,))
e So T(c,o,) ~%m™) T(c, o), as desired

May 6, 2013 ECS 235B Spring Quarter 2013

Slide #48

Case 2

* value(l, T(c, 0,)) # value(l., 0,)
e Condition 3: [. € write(dom(c))
* As !l €read(d),condition 5 says dom(c)rd
e Condition 4 says read(dom(c)) C read(d)
* Aso,~o,,0, ~m) g
e Condition 2:
value(l;, T(c, 0,)) = value(l,, T(c, G,))
e So T(c,o,) ~%m™) T(c, o), as desired

May 6, 2013 ECS 235B Spring Quarter 2013

Slide #49

Case 3

e Neither of the previous two
—value(l., T(c, 0,)) = value(l., 0)
—value(l;, T(c, 0,)) = value(l., G,)
e Interpretation of o, ~¢ g, is:
for [. € read(d), value(l,, 0,) = value(l., 0,)
e So T(c,0,) ~*T(c, 0,), as desired

e In all 3 cases, X transition-consistent

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #50

Policies Changing Over Time

* Problem: previous analysis assumes static system
— In real life, ACM changes as system commands issued
 Example: w € C* leads to current state
— cando(w, s, 7) holds 1f s can execute z in current state
— Condition noninterference on cando

— If =cando(w, Lara, “write f’), Lara can’t interfere with
any other user by writing file f

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #51

Generalize Noninterference

e G C S group of subjects, A C Z set of commands, p
predicate over elements of C*

e ¢, =(cy,...,c,) ECH
e w'(V)=v

e w'((cyy...,c))=(c{,...,c,)
— ¢/ =vifp(c/,...,c.;)and c;=(s,z) withsEGand zE A

— ¢, = c,; otherwise

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #52

Intuition

e t''(c,) =c,

e But if p holds, and element of ¢, involves
both command in A and subject in G,
replace corresponding element of ¢, with
empty command v

— Just like deleting entries from ¢, as 1w, ; does
earlier

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #53

Noninterference

 G,G' C § groups of subjects, A C Z set of
commands, p predicate over C*
e Users in G executing commands in A are

noninterfering with users in G’ under
condition p iff, for all c, € C*, all s € G/,

proj(s, c¢;, 0;) = proj(s, ' (c,), ;)
— Written A,G | G" if p

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #54

Example

 From earlier one, simple security policy
based on noninterference:

ViseS) Vize 2
[{z}, {s} :| Sif —cando(w, s, 7)]

e If subject can’t execute command (the
—~cando part), subject can’t use that
command to interfere with another subject

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #55

Another Example

e Consider system 1n which rights can be
passed

— pass(s, z) gives s right to execute z
-w, =v,,...,v, sequence of v. € C*

—prev(w,)=w,_;lastiw,) =v,

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #56

Policy

* No subject s can use 7 to interfere 1if, in
previous state, s did not have right to z, and
no subject gave 1t to §

{z},{s}:ASif
| —~cando(prev(w), s,2) A
[cando(prev(w), s', pass(s, 2)) =

—last(w) = (s', pass(s,2)) 1]

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #57

Effect

e Suppose s, € S can execute pass(s,, z)
e For all w € C*, cando(w, s, pass(s,, 7)) true
e Initially, cando(v, s,, z) talse

e Let 7z € Zbe such that (s;, z') noninterfering
with (s,, 2)
— So for each w, with v_ = (s5, 2'),
cando(w,, s,,z) = cando(w,_,, S5, 2)

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #58

Effect

 Then policy says for all s € §
proj(s, ((s,, 2), (sy, pass(s,, 2)), (53, 2), (55, 2)), O)
= proj(s, (s, pass(s,, z)), (s, 2'), (8,, 2)), 0))
* So s,’s first execution of z does not attect
any subject’s observation of system

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #59

Policy Composition I

e Assumed: Output function of input
— Means deterministic (else not function)

— Means uninterruptability (differences in timings
can cause differences in states, hence in
outputs)

e This result for deterministic,
noninterference-secure systems

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #60

Compose Systems

* Louie, Dewey LOW
 Hughie HIGH
* b, output buffer by

— Anyone can read it

by
e b, input buffer b

— From HIGH source I@' Hughie

* Hughie reads from: ‘
. . Dewey b
— b, (Louie writes) DH U

— b, py (Louie, Dewey write)

v

— bpy (Dewey writes)

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #61

Systems Secure

e All noninterference-
secure

br

— Hughie has no output i

by
* So inputs don’t interfere — A
with it LH

— Louie, Dewey have no |bLDH> Hughie
nput bor[P\)

* So (nonexistent) inputs
don’t interfere with
outputs

v

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #62

Security of Composition

e Buffers finite, sends/receives blocking: composition
not secure!

— Example: assume b, b, ; have capacity 1
e Algorithm:

1. Louie (Dewey) sends message to b, ,; (bpy)
— Fills buffer

2. Louie (Dewey) sends second message to b, , (byy)
3. Louie (Dewey) sends a0 (1) to b,

4. Louie (Dewey) sends message to b,
— Signals Hughie that Louie (Dewey) completed a cycle

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #63

Hughie

e Reads bit from b,

— If 0, receive message from b,

— If 1, receive message from b,

e Receive on b,y
— To wait for buffer to be filled

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #64

Example

* Hughie reads O from b,

— Reads message from b, ,

 Now Louie’s second message goes into b,
— Louie completes setp 2 and writes O into b,

 Dewey blocked at step 1

— Dewey cannot write to b,

 Symmetric argument shows that Hughie reading 1
produces a 1 in b,

* So, input from b, copied to output b,

May 6, 2013 ECS 235B Spring Quarter 2013 Slide #65

