Lecture 16

- Policy composition approaches
- Noninterference
 - Access control matrix interpretation
- Policy composition
 - Composing noninterfering machines may not produce a noninterfering machine!

Model

- System as state machine
 - Subjects $S = \{ s_i \}$
 - States $\Sigma = \{ \sigma_i \}$
 - Outputs $O = \{ o_i \}$
 - Commands $Z = \{ z_i \}$
 - State transition commands $C = S \times Z$
- Note: no inputs
 - Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command c in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command c in state σ
- Initial state is σ_0

Example

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 System state is (H, L) where H, L are 0, 1
- 2 commands: xor_0 , xor_1 do xor with 0, 1
 - Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- $S = \{$ Heidi, Lucy $\}$
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$

•
$$C = \{ xor_0, xor_1 \}$$

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xor0	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

ECS 235B Spring Quarter 2013

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1; T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let *C** be set of possible sequences of commands in *C*

•
$$T^*: C^* \times \Sigma \rightarrow \Sigma$$
 and

$$c_s = c_0 \dots c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, \dots, T(c_0, \sigma_i) \dots)$$

• *P* similar; define *P** similarly

Projection

- $T^*(c_s, \sigma_i)$ sequence of state transitions
- $P^*(c_s, \sigma_i)$ corresponding outputs
- $proj(s, c_s, \sigma_i)$ set of outputs in $P^*(c_s, \sigma_i)$ that subject *s* authorized to see
 - In same order as they occur in $P^*(c_s, \sigma_i)$
 - Projection of outputs for s
- Intuition: list of outputs after removing outputs that *s* cannot see

Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements $(s,z), s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements $(s,z), z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements $(s,z), s \in G$ and $z \in A$ deleted

Example: 2-bit Machine

- Let $\sigma_0 = (0,1)$
- 3 commands applied:
 - Heidi applies *xor*₀
 - Lucy applies xor_1
 - Heidi applies xor_1
- $c_s = ((\text{Heidi}, xor_0), (\text{Lucy}, xor_1), (\text{Heidi}, xor_0))$
- Output is 011001
 - Shorthand for sequence (0,1)(1,0)(0,1)

Example

- *proj*(Heidi, c_s, σ_0) = 011001
- $proj(Lucy, c_s, \sigma_0) = 101$
- $\pi_{\text{Lucy}}(c_s) = ((\text{Heidi}, xor_0), (\text{Heidi}, xor_1))$
- $\pi_{\text{Lucy},xor1}(c_s) = ((\text{Heidi}, xor_0), (\text{Heidi}, xor_1))$
- $\pi_{\text{Heidi}}(c_s) = ((\text{Lucy}, xor_1))$

Example

• $\pi_{\text{Lucy},xor0}(c_s) = ((\text{Heidi}, xor_0), (\text{Lucy}, xor_1), (\text{Heidi}, xor_1))$

•
$$\pi_{\text{Heidi},xor0}(c_s) = \pi_{xor0}(c_s) = ((\text{Lucy}, xor_1), (\text{Heidi}, xor_1))$$

- $\pi_{\text{Heidi, xor1}}(c_s) = ((\text{Heidi, xor}_0), (\text{Lucy, xor}_1))$
- $\pi_{xor1}(c_s) = ((\text{Heidi}, xor_0))$

Noninterference

- Intuition: Set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; Users in *G* executing commands in *A* are *noninterfering* with users in *G'* iff for all $c_s \in C^*$, and for all $s \in G'$,

$$proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$$

– Written A,G : I G'

Example

- Let $c_s = ((\text{Heidi}, xor_0), (\text{Lucy}, xor_1), (\text{Heidi}, xor_1))$ and $\sigma_0 = (0, 1)$
- Take $G = \{ \text{Heidi} \}, G' = \{ \text{Lucy} \}, A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = ((\text{Lucy}, xor_1))$ - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
- proj(Lucy, c_s, σ_0) = 101
- So { Heidi } : I { Lucy } is false
 - Makes sense; commands issued to change *H* bit also affect *L* bit

Example

- Same as before, but Heidi's commands affect *H* bit only, Lucy's the *L* bit only
- Output is $0_H 0_L 1_H$
- $\pi_{\text{Heidi}}(c_s) = ((\text{Lucy}, xor1))$ - So $proj(\text{Lucy}, \pi_{\text{Heidi}}(c_s), \sigma_0) = 0$
- proj(Lucy, c_s, σ_0) = 0
- So { Heidi } : I { Lucy } is true
 - Makes sense; commands issued to change H bit now do not affect L bit

Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a *security policy* is a set of noninterference assertions
 - See previous definition

Alternative Development

- System X is a set of protection domains $D = \{ d_1, \dots, d_n \}$
- When command *c* executed, it is executed in protection domain *dom*(*c*)
- Give alternate versions of definitions shown previously

Output-Consistency

- $c \in C, dom(c) \in D$
- $\sim^{dom(c)}$ equivalence relation on states of system X
- $\sim^{dom(c)}$ output-consistent if

 $\sigma_a \sim^{dom(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$

• Intuition: states are output-consistent if for subjects in *dom*(*c*), projections of outputs for both states after *c* are the same

Security Policy

- $D = \{ d_1, \dots, d_n \}, d_i$ a protection domain
- *r*: *D*×*D* a reflexive relation
- Then *r* defines a security policy
- Intuition: defines how information can flow around a system
 - $d_i r d_j$ means info can flow from d_i to d_j $- d_i r d_i$ as info can flow within a domain

Projection Function

- π' analogue of π , earlier
- Commands, subjects absorbed into protection domains
- $d \in D, c \in C, c_s \in C^*$
- $\pi'_d(\mathbf{v}) = \mathbf{v}$
- $\pi'_d(c_s c) = \pi'_d(c_s)c$ if dom(c)rd
- $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
- Intuition: if executing *c* interferes with *d*, then *c* is visible; otherwise, as if *c* never executed

Noninterference-Secure

- System has set of protection domains *D*
- System is noninterference-secure with respect to policy *r* if

 $P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$

• Intuition: if executing c_s causes the same transitions for subjects in domain *d* as does its projection with respect to domain *d*, then no information flows in violation of the policy

Lemma

- Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
- If ~^d output-consistent, then system is noninterference-secure with respect to policy *r*

Proof

- d = dom(c) for $c \in C$
- By definition of output-consistent,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

implies

 $P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$

• This is definition of noninterference-secure with respect to policy *r*

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc*. issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying *c* under policy *r* to system *X* has no effect on domain *d* when *X* locally respects *r*

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command *c* does not affect equivalence of states under policy *r*

Lemma

- $c_1, c_2 \in C, d \in D$
- For policy r, $dom(c_1)rd$ and $dom(c_2)rd$
- Then

 $T^*(c_1c_2,\!\sigma)=T(c_1,\!T(c_2,\!\sigma))=T(c_2,\!T(c_1,\!\sigma))$

• Intuition: if info can flow from domains of commands into *d*, then order doesn't affect result of applying commands

Theorem

- *r* policy, *X* system that is output consistent, transition consistent, locally respects *r*
- X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to *r* follows

Proof

- Must show $\sigma_a \sim^d \sigma_b$ implies $T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$
- Induct on length of c_s
- Basis: $c_s = v$, so $T^*(c_s, \sigma) = \sigma$; $\pi'_d(v) = v$; claim holds
- Hypothesis: $c_s = c_1 \dots c_n$; then claim holds

Induction Step

- Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
- 2 cases:
 - $dom(c_{n+1})rd$ holds
 - $dom(c_{n+1})rd$ does not hold

$dom(c_{n+1})rd$ Holds

$$T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s) c_{n+1}, \sigma_b)$$

= $T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$

– by definition of T^* and π'_d

- $T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b)$ - as X transition-consistent and $\sigma_a \sim^d \sigma_b$
- $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$ - by transition-consistency and IH

$dom(c_{n+1})rd$ Holds

- $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b))$ - by substitution from earlier equality $T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s)c_{n+1}, \sigma_b))$ - by definition of T^*
- proving hypothesis

$dom(c_{n+1})rd$ Does Not Hold

$$T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b)$$

$$- \text{ by definition of } \pi'_d$$

$$T^*(c_s, \sigma_b) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

$$- \text{ by above and IH}$$

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a)$$

$$- \text{ as } X \text{ locally respects } r, \text{ so } \sigma \sim^d T(c_{n+1}, \sigma) \text{ for any } \sigma$$

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s) c_{n+1}, \sigma_b))$$

$$- \text{ substituting back}$$

• proving hypothesis

Finishing Proof

• Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

By previous lemma, as X (and so ~^d) output consistent, then X is noninterference-secure with respect to policy r

Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM

ACM Model

• Objects $L = \{ l_1, ..., l_m \}$ - Locations in memory

• Values
$$V = \{ v_1, ..., v_n \}$$

– Values that L can assume

- Set of states $\Sigma = \{ \sigma_1, \dots, \sigma_k \}$
- Set of protection domains $D = \{ d_1, \dots, d_j \}$

Functions

- value: $L \times \Sigma \rightarrow V$
 - returns value v stored in location l when system in state σ
- read: $D \rightarrow 2^V$
 - returns set of objects observable from domain d
- write: $D \rightarrow 2^V$
 - returns set of objects observable from domain d

Interpretation of ACM

- Functions represent ACM
 - Subject *s* in domain *d*, object *o*
 - $-r \in A[s, o]$ if $o \in read(d)$
 - $w \in A[s, o]$ if $o \in write(d)$
- Equivalence relation:

 $[\sigma_a \sim^{dom(c)} \sigma_b] \Leftrightarrow [\forall l_i \in read(d) \\ [value(l_i, \sigma_a) = value(l_i, \sigma_b)]]$

- You can read the *exactly* the same locations in both states

Enforcing Policy r

- 5 requirements
 - 3 general ones describing dependence of commands on rights over input and output
 - Hold for all ACMs and policies
 - -2 that are specific to some security policies
 - Hold for *most* policies

Enforcing Policy r: First

 Output of command *c* executed in domain *dom(c)* depends only on values for which subjects in *dom(c)* have read access

$$\sigma_a \sim^{dom(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$$

Enforcing Policy r: Second

If c changes l_i, then c can only use values of objects in read(dom(c)) to determine new value

$$[\sigma_{a} \sim^{dom(c)} \sigma_{b} and \\ (value(l_{i}, T(c, \sigma_{a})) \neq value(l_{i}, \sigma_{a}) or \\ value(l_{i}, T(c, \sigma_{b})) \neq value(l_{i}, \sigma_{b}))] \Rightarrow \\ value(l_{i}, T(c, \sigma_{a})) = value(l_{i}, T(c, \sigma_{b}))$$

Enforcing Policy r: Third

• If c changes l_i , then dom(c) provides subject executing c with write access to l_i $value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a) \Rightarrow$ $l_i \in write(dom(c))$

Enforcing Policies r: Fourth

- If domain *u* can interfere with domain *v*, then every object that can be read in *u* can also be read in *v*
- So if object *o* cannot be read in *u*, but can be read in *v*; and object *o'* in *u* can be read in *v*, then info flows from *o* to *o'*, then to *v*

Let $u, v \in D$; then $urv \Rightarrow read(u) \subseteq read(v)$

Enforcing Policies r: Fifth

• Subject *s* can write object *o* in *v*, subject *s'* can read *o* in *u*, then domain *v* can interfere with domain *u*

 $l_i \in read(u) \text{ and } l_i \in write(v) \Rightarrow vru$

Theorem

- Let *X* be a system satisfying the five conditions. The *X* is noninterference-secure with respect to r
- Proof: must show X output-consistent, locally respects r, transition-consistent
 - Then by unwinding theorem, theorem holds

Output-Consistent

• Take equivalence relation to be ~^d, first condition *is* definition of output-consistent

Locally Respects r

- Proof by contradiction: assume $(dom(c), d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by *c*:

 $\exists l_i \in read(d) [value(l_i, \sigma_a) \neq value(l_i, T(c, \sigma_a))]$

- Condition 3: $l_i \in write(d)$
- Condition 5: *dom*(*c*)*rd*, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r

Transition Consistency

- Assume $\sigma_a \sim^d \sigma_b$
- Must show

value $(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))$ for $l_i \in read(d)$

 3 cases dealing with change that *c* makes in *l_i* in states σ_a, σ_b

Case 1

- $value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a)$
- Condition 3: $l_i \in write(dom(c))$
- As $l_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4 says $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2:

 $value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))$

• So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 2

- $value(l_i, T(c, \sigma_b)) \neq value(l_i, \sigma_b)$
- Condition 3: $l_i \in write(dom(c))$
- As $l_i \in read(d)$, condition 5 says dom(c)rd
- Condition 4 says $read(dom(c)) \subseteq read(d)$
- As $\sigma_a \sim^d \sigma_b$, $\sigma_a \sim^{dom(c)} \sigma_b$
- Condition 2:

 $value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b))$

• So $T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b)$, as desired

Case 3

- Neither of the previous two
 value(l_i, T(c, σ_a)) = value(l_i, σ_a)
 value(l_i, T(c, σ_b)) = value(l_i, σ_b)
- Interpretation of $\sigma_a \sim^d \sigma_b$ is: for $l_i \in read(d)$, $value(l_i, \sigma_a) = value(l_i, \sigma_b)$
- So $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, as desired
- In all 3 cases, *X* transition-consistent

Policies Changing Over Time

- Problem: previous analysis assumes static system
 In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - cando(w, s, z) holds if s can execute z in current state
 - Condition noninterference on *cando*
 - If ¬*cando*(*w*, Lara, "write *f*"), Lara can't interfere with any other user by writing file *f*

Generalize Noninterference

• $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, *p* predicate over elements of C^*

•
$$c_s = (c_1, \dots, c_n) \in C^*$$

• $\pi''(v) = v$

•
$$\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$$

- $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
- $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if *p* holds, and element of c_s involves both command in *A* and subject in *G*, replace corresponding element of c_s with empty command v
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, *p* predicate over C^*
- Users in *G* executing commands in *A* are noninterfering with users in *G'* under condition *p* iff, for all c_s ∈ C*, all s ∈ G', proj(s, c_s, σ_i) = proj(s, π''(c_s), σ_i)

 Written A,G :| G' if p

Example

• From earlier one, simple security policy based on noninterference:

 $\forall (s \in S) \; \forall (z \in Z)$

 $[\{z\},\{s\}:|S \text{ if } \neg cando(w,s,z)]$

If subject can't execute command (the ¬*cando* part), subject can't use that command to interfere with another subject

Another Example

• Consider system in which rights can be passed

- pass(s, z) gives s right to execute z

$$-w_n = v_1, \dots, v_n \text{ sequence of } v_i \in C^*$$
$$-prev(w_n) = w_{n-1}; \text{ last}(w_n) = v_n$$

Policy

• No subject *s* can use *z* to interfere if, in previous state, *s* did not have right to *z*, and no subject gave it to *s*

$$\{ z \}, \{ s \} : | S if$$

$$[\neg cando(prev(w), s, z) \land \\ [cando(prev(w), s', pass(s, z)) \Rightarrow \\ \neg last(w) = (s', pass(s, z))]]$$

ECS 235B Spring Quarter 2013

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, $cando(w, s_1, pass(s_2, z))$ true
- Initially, $cando(v, s_2, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)

- So for each w_n with $v_n = (s_3, z')$, $cando(w_n, s_2, z) = cando(w_{n-1}, s_2, z)$

ECS 235B Spring Quarter 2013

Effect

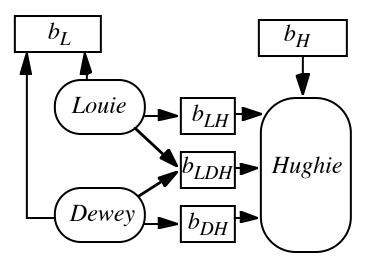
- Then policy says for all $s \in S$ $proj(s, ((s_2, z), (s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$ $= proj(s, ((s_1, pass(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)$
- So *s*₂'s first execution of *z* does not affect any subject's observation of system

Policy Composition I

- Assumed: Output function of input
 - Means deterministic (else not function)
 - Means uninterruptability (differences in timings can cause differences in states, hence in outputs)
- This result for deterministic, noninterference-secure systems

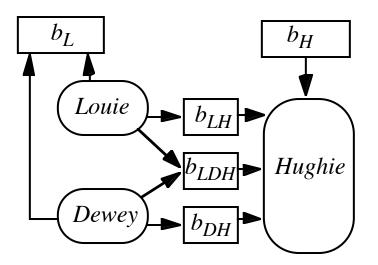
Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_L output buffer
 - Anyone can read it
- b_H input buffer
 - From HIGH source
- Hughie reads from:
 - b_{LH} (Louie writes)
 - b_{LDH} (Louie, Dewey write)
 - b_{DH} (Dewey writes)



Systems Secure

- All noninterferencesecure
 - Hughie has no output
 - So inputs don't interfere with it
 - Louie, Dewey have no input
 - So (nonexistent) inputs don't interfere with outputs



Security of Composition

- Buffers finite, sends/receives blocking: composition *not* secure!
 - Example: assume b_{DH} , b_{LH} have capacity 1
- Algorithm:
 - 1. Louie (Dewey) sends message to $b_{LH} (b_{DH})$
 - Fills buffer
 - 2. Louie (Dewey) sends second message to $b_{LH} (b_{DH})$
 - 3. Louie (Dewey) sends a 0 (1) to b_L
 - 4. Louie (Dewey) sends message to b_{LDH}
 - Signals Hughie that Louie (Dewey) completed a cycle

Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled

Example

- Hughie reads 0 from b_H
 - Reads message from b_{LH}
- Now Louie's second message goes into b_{LH}
 - Louie completes setp 2 and writes 0 into b_L
- Dewey blocked at step 1
 - Dewey cannot write to b_L
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_L