
Lecture 17	

•  Nondeducibility	

•  Composition and restrictiveness	

•  What is identity	

•  Multiple names for one thing	

•  Different contexts, environments	

•  Pseudonymity and anonymity	

May 8, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #1	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Nondeducibility	

•  Noninterference: do state transitions caused
by high level commands interfere with
sequences of state transitions caused by low
level commands?	

•  Really case about inputs and outputs:	

– Can low level subject deduce anything about

high level outputs from a set of low level
outputs?	

Slide #2	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example: 2-Bit System	

•  High operations change only High bit	

– Similar for Low	

•  σ0 = (0, 0)	

•  Commands (Heidi, xor1), (Lara, xor0),

(Lara, xor1), (Lara, xor0), (Heidi, xor1),
(Lara, xor0)	

– Both bits output after each command	

•  Output is: 00 10 10 11 11 01 01	

Slide #3	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Security	

•  Not noninterference-secure w.r.t. Lara	

–  Lara sees output as 0001111	

–  Delete High and she sees 00111	

•  But Lara still cannot deduce the commands deleted	

–  Don’t affect values; only lengths	

•  So it is deducibly secure	

–  Lara can’t deduce the commands Heidi gave	

Slide #4	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Event System	

•  4-tuple (E, I, O, T)	

–  E set of events	

–  I ⊆ E set of input events	

–  O ⊆ E set of output events	

–  T set of all finite sequences of events legal within system	

•  E partitioned into H, L	

–  H set of High events	

–  L set of Low events	

Slide #5	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

More Events …	

•  H ∩ I set of High inputs	

•  H ∩ O set of High outputs	

•  L ∩ I set of Low inputs	

•  L ∩ O set of Low outputs	

•  TLow set of all possible sequences of Low events that are

legal within system	

•  πL: T→TLow projection function deleting all High inputs

from trace	

‒  Low observer should not be able to deduce anything about High

inputs from trace tLow ∈ Tlow	

Slide #6	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Deducibly Secure	

•  System deducibly secure if, for every trace
tLow ∈ TLow, the corresponding set of high
level traces contains every possible trace
t ∈ T for which πL(t) = tLow 	

– Given any tLow, the trace t ∈ T producing that

tLow is equally likely to be any trace with
πL(t) = tLow 	

Slide #7	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  Back to our 2-bit machine	

–  Let xor0, xor1 apply to both bits	

–  Both bits output after each command	

•  Initial state: (0, 1)	

•  Inputs: 1H0L1L0H1L0L	

•  Outputs: 10 10 01 01 10 10	

•  Lara (at Low) sees: 001100	

–  Does not know initial state, so does not know first input; but can
deduce fourth input is 0	

•  Not deducibly secure	

Slide #8	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  Now xor0, xor1 apply only to state bit with same

level as user	

•  Inputs: 1H0L 1L0H 1L0L	

•  Outputs: 10 11 11 10 11	

•  Lara sees: 01101	

•  She cannot deduce anything about input	

–  Could be 0H0L 1L0H 1L0L or 0L1H 1L0H 1L0L for example	

•  Deducibly secure	

Slide #9	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Security of Composition	

•  In general: deducibly secure systems not
composable	

•  Strong noninterference: deducible security
+ requirement that no High output occurs
unless caused by a High input	

– Systems meeting this property are composable	

Slide #10	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  2-bit machine done earlier does not exhibit
strong noninterference	

– Because it puts out High bit even when there is

no High input	

•  Modify machine to output only state bit at

level of latest input	

– Now it exhibits strong noninterference	

Slide #11	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Problem	

•  Too restrictive; it bans some systems that
are obviously secure	

•  Example: System upgrade reads Low
inputs, outputs those bits at High	

– Clearly deducibly secure: low level user sees no

outputs	

– Clearly does not exhibit strong noninterference,

as no high level inputs!	

Slide #12	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Remove Determinism	

•  Previous assumption	

–  Input, output synchronous	

– Output depends only on commands triggered

by input	

•  Sometimes absorbed into commands …	

–  Input processed one datum at a time	

•  Not realistic	

–  In real systems, lots of asynchronous events	

Slide #13	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Generalized Noninterference	

•  Nondeterministic systems meeting
noninterference property meet generalized
noninterference-secure property	

– More robust than deducible security because

minor changes in assumptions affect whether
system is deducibly secure	

Slide #14	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  System with High Holly, Low lucy, text file at High	

–  File fixed size, symbol b marks empty space	

–  Holly can edit file, Lucy can run this program:	

!while true do begin!
! !n := read_integer_from_user;!
! !if n > file_length or char_in_file[n] = b then!
! ! !print random_character;!
! !else!
! ! !print char_in_file[n];!
!end;!

Slide #15	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Security of System	

•  Not noninterference-secure	

–  High level inputs—Holly’s changes—affect low level
outputs	

•  May be deducibly secure	

–  Can Lucy deduce contents of file from program?	

–  If output meaningful (“This is right”) or close (“Thes is

riqht”), yes	

–  Otherwise, no	

•  So deducibly secure depends on which inferences
are allowed 	

Slide #16	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Composition of Systems	

•  Does composing systems meeting
generalized noninterference-secure property
give you a system that also meets this
property?	

•  Define two systems (cat, dog)	

•  Compose them	

Slide #17	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

First System: cat	

•  Inputs, outputs can go
left or right	

•  After some number of
inputs, cat sends two
outputs	

–  First stop_count	

–  Second parity of High

inputs, outputs	

HIGH HIGH

LOW
stop_count0 or 1

catLOW

Slide #18	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Noninterference-Secure?	

•  If even number of High inputs, output could be:	

–  0 (even number of outputs)	

–  1 (odd number of outputs)	

•  If odd number of High inputs, output could be:	

–  0 (odd number of outputs)	

–  1 (even number of outputs)	

•  High level inputs do not affect output	

–  So noninterference-secure	

Slide #19	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Second System: dog	

•  High outputs to left	

•  Low outputs of 0 or 1

to right	

•  stop_count input from

the left	

–  When it arrives, dog

emits 0 or 1	

HIGH

HIGH LOW
0 or 1

dog

stop_count

Slide #20	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Noninterference-Secure?	

•  When stop_count arrives:	

–  May or may not be inputs for which there are no
corresponding outputs	

–  Parity of High inputs, outputs can be odd or even	

–  Hence dog emits 0 or 1	

•  High level inputs do not affect low level outputs	

–  So noninterference-secure	

Slide #21	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Compose Them	

•  Once sent, message arrives	

–  But stop_count may arrive before all inputs have generated corresponding

outputs	

–  If so, even number of High inputs and outputs on cat, but odd number on

dog	

•  Four cases arise	

HIGH HIGH

LOW
stop_count0 or 1

cat LOW
0 or 1

dog
LOW

Slide #22	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

The Cases	

•  cat, odd number of inputs, outputs; dog, even number of

inputs, odd number of outputs	

–  Input message from cat not arrived at dog, contradicting

assumption	

•  cat, even number of inputs, outputs; dog, odd number of

inputs, even number of outputs	

–  Input message from dog not arrived at cat, contradicting

assumption	

Slide #23	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

The Cases	

•  cat, odd number of inputs, outputs; dog, odd number of

inputs, even number of outputs	

–  dog sent even number of outputs to cat, so cat has had at least one

input from left	

•  cat, even number of inputs, outputs; dog, even number of

inputs, odd number of outputs	

–  dog sent odd number of outputs to cat, so cat has had at least one

input from left	

Slide #24	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

The Conclusion	

•  Composite system catdog emits 0 to left, 1 to right (or 1 to

left, 0 to right)	

–  Must have received at least one input from left	

•  Composite system catdog emits 0 to left, 0 to right (or 1 to
left, 1 to right)	

–  Could not have received any from left	

•  So, High inputs affect Low outputs	

–  Not noninterference-secure	

Slide #25	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Feedback-Free Systems	

•  System has n distinct components	

•  Components ci, cj connected if any output of ci is input to

cj 	

•  System is feedback-free if for all ci connected to cj, cj not

connected to any ci	

–  Intuition: once information flows from one component to another,

no information flows back from the second to the first	

Slide #26	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Feedback-Free Security	

•  Theorem: A feedback-free system
composed of noninterference-secure
systems is itself noninterference-secure	

Slide #27	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Some Feedback	

•  Lemma: A noninterference-secure system can feed a high

level output o to a high level input i if the arrival of o at the
input of the next component is delayed until after the next
low level input or output	

•  Theorem: A system with feedback as described in the
above lemma and composed of noninterference-secure
systems is itself noninterference-secure	

Slide #28	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Why Didn’t They Work?	

•  For compositions to work, machine must act
same way regardless of what precedes low
level input (high, low, nothing)	

•  dog does not meet this criterion	

–  If first input is stop_count, dog emits 0	

–  If high level input precedes stop_count, dog

emits 0 or 1	

Slide #29	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

State Machine Model	

•  2-bit machine, levels High, Low, meeting 4
properties:	

1.  For every input ik, state σj, there is an
element cm ∈ C* such that T*(cm, σj) = σn,
where σn ≠ σj	

– T* is total function, inputs and commands
always move system to a different state	

Slide #30	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Property 2	

•  There is an equivalence relation ≡ such that:	

–  If system in state σi and high level sequence of inputs causes
transition from σi to σj, then σi ≡ σj	

–  If σi ≡ σj and low level sequence of inputs i1, …, in causes system
in state σi to transition to σiʹ′, then there is a state σjʹ′ such that
σiʹ′ ≡ σjʹ′ and the inputs i1, …, in cause system in state σj to
transition to σjʹ′	

•  ≡ holds if low level projections of both states are same	

Slide #31	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Property 3	

•  Let σi ≡ σj. If high level sequence of outputs
o1, …, on indicate system in state σi
transitioned to state σiʹ′, then for some state
σjʹ′ with σjʹ′ ≡ σiʹ′, high level sequence of
outputs o1ʹ′, …, omʹ′ indicates system in σj
transitioned to σjʹ′	

– High level outputs do not indicate changes in

low level projection of states	

Slide #32	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Property 4	

•  Let σi ≡ σj, let c, d be high level output sequences, e a low

level output. If ced indicates system in state σi transitions
to σiʹ′, then there are high level output sequences c’ and d’
and state σjʹ′ such that cʹ′edʹ′ indicates system in state σj
transitions to state σjʹ′	

–  Intermingled low level, high level outputs cause changes in low

level state reflecting low level outputs only	

Slide #33	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Restrictiveness	

•  System is restrictive if it meets the
preceding 4 properties	

Slide #34	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Composition	

•  Intuition: by 3 and 4, high level output
followed by low level output has same
effect as low level input, so composition of
restrictive systems should be restrictive	

Slide #35	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Composite System	

•  System M1’s outputs are M2’s inputs	

•  µ1i, µ2i states of M1, M2	

•  States of composite system pairs of M1, M2

states (µ1i, µ2i)	

•  e event causing transition	

•  e causes transition from state (µ1a, µ2a) to

state (µ1b, µ2b) if any of 3 conditions hold	

Slide #36	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Conditions	

1.  M1 in state µ1a and e occurs, M1 transitions to µ1b; e not

an event for M2; and µ2a = µ2b	

2.  M2 in state µ2a and e occurs, M2 transitions to µ2b; e not
an event for M1; and µ1a = µ1b	

3.  M1 in state µ1a and e occurs, M1 transitions to µ1b; M2 in
state µ2a and e occurs, M2 transitions to µ2b; e is input to
one machine, and output from other	

Slide #37	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Intuition	

•  Event causing transition in composite
system causes transition in at least 1 of the
components	

•  If transition occurs in exactly one
component, event must not cause transition
in other component when not connected to
the composite system	

Slide #38	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Equivalence for Composite	

•  Equivalence relation for composite system	

(σa, σb) ≡C (σc, σd) iff σa ≡ σc and σb ≡ σd	

•  Corresponds to equivalence relation in
property 2 for component system	

Slide #39	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Identity	

•  Principal: a unique entity	

•  Identity: specifies a principal	

•  Authentication: binding of a principal to a

representation of identity internal to the
system	

– All access, resource allocation decisions

assume binding is correct	

Slide #40	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Files and Objects	

•  Identity depends on system containing
object	

•  Different names for one object	

– Human use, eg. file name	

– Process use, eg. file descriptor or handle	

– Kernel use, eg. file allocation table entry, inode	

Slide #41	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

More Names	

•  Different names for one context	

– Human: aliases, relative vs. absolute path

names	

– Kernel: deleting a file identified by name can

mean two things:	

•  Delete the object that the name identifies	

•  Delete the name given, and do not delete actual

object until all names have been deleted	

•  Semantics of names may differ	

Slide #42	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example: Names and Descriptors	

•  Interpretation of UNIX file name	

–  Kernel maps name into an inode using iterative

procedure	

–  Same name can refer to different objects at different

times without being deallocated	

•  Causes race conditions	

•  Interpretation of UNIX file descriptor	

–  Refers to a specific inode	

–  Refers to same inode from creation to deallocation	

Slide #43	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Example: Different Systems	

•  Object name must encode location or
pointer to location	

–  rsh, ssh style: host:object	

– URLs: protocol://host/object	

•  Need not name actual object	

–  rsh, ssh style may name pointer (link) to actual

object	

– URL may forward to another host	

Slide #44	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Users	

•  Exact representation tied to system	

•  Example: UNIX systems	

– Login name: used to log in to system	

•  Logging usually uses this name	

– User identification number (UID): unique
integer assigned to user	

•  Kernel uses UID to identify users	

•  One UID per login name, but multiple login names

may have a common UID	

Slide #45	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Multiple Identities	

•  UNIX systems again	

–  Real UID: user identity at login, but changeable	

–  Effective UID: user identity used for access control	

•  Setuid changes effective UID	

–  Saved UID: UID before last change of UID	

•  Used to implement least privilege	

•  Work with privileges, drop them, reclaim them later	

–  Audit/Login UID: user identity used to track original
UID	

•  Cannot be altered; used to tie actions to login identity	

Slide #46	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Groups	

•  Used to share access privileges	

•  First model: alias for set of principals	

– Processes assigned to groups	

– Processes stay in those groups for their lifetime	

•  Second model: principals can change
groups	

– Rights due to old group discarded; rights due to

new group added	

Slide #47	

May 8, 2013	
 ECS 235B Spring Quarter 2013	

Roles	

•  Group with membership tied to function	

–  Rights given are consistent with rights needed to

perform function	

•  Uses second model of groups	

•  Example: DG/UX	

–  User root does not have administration functionality	

–  System administrator privileges are in sysadmin role	

–  Network administration privileges are in netadmin role	

–  Users can assume either role as needed	

Slide #48	

