
Lecture 20	


•  Compiler-based mechanisms	


•  Execution-based mechanisms	


•  The confinement problem	


•  Isolation: virtual machines, sandboxes	


•  Covert channels	



– Detection	


– Mitigation	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #1	





Procedure Calls	


tm(a, b);!

From previous slides, to be secure, lub(x, i) ≤ y must hold	


•  In call, x corresponds to a, y to b	


•  Means that lub(a, i) ≤ b, or a ≤ b 	


More generally:	


proc pn(i1, . . ., im: int; var o1, . . ., on: int) !
begin S end;	


•  S must be secure	


•  For all j and k, if ij ≤ ok, then xj ≤ yk	


•  For all j and k, if oj ≤ ok, then  yj ≤ yk	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #2	





Exceptions	


proc copy(x: int class { x };!
                var y: int class Low)!
var sum: int class { x };!
    z: int class Low;!
begin!
     y := z := sum := 0;!
     while z = 0 do begin!
          sum := sum + x;!
          y := y + 1;!
     end!
end!

May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #3	





Exceptions (cont)	



•  When sum overflows, integer overflow trap	


–  Procedure exits	


–  Value of x is MAXINT/y	


–  Info flows from y to x, but x ≤ y never checked	



•  Need to handle exceptions explicitly	


–  Idea: on integer overflow, terminate loop	


on integer_overflow_exception sum do z := 1;!

–  Now info flows from sum to z, meaning sum ≤ z	


–  This is false (sum = { x } dominates z = Low)	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #4	





Infinite Loops	


proc copy(x: int 0..1 class { x };!
                var y: int 0..1 class Low)!
begin!
     y := 0;!
     while x = 0 do!
          (* nothing *);!
     y := 1;!
end!
•  If x = 0 initially, infinite loop	


•  If x = 1 initially, terminates with y set to 1	


•  No explicit flows, but implicit flow from x to y	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #5	





Semaphores	



Use these constructs:	


wait(x):   if x = 0 then block until x > 0; x := x – 1;!
signal(x): x := x + 1;	



–  x is semaphore, a shared variable	


– Both executed atomically	



Consider statement	


wait(sem); x := x + 1;!

•  Implicit flow from sem to x	


– Certification must take this into account!	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #6	





Flow Requirements	


•  Semaphores in signal irrelevant	



–  Don’t affect information flow in that process	


•  Statement S is a wait	



–  shared(S): set of shared variables read	


•  Idea: information flows out of variables in shared(S)	



–  fglb(S): glb of assignment targets following S	


–  So, requirement is shared(S) ≤ fglb(S)	



•  begin S1; . . . Sn end	


–  All Si must be secure	


–  For all i, shared(Si) ≤ fglb(Si)	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #7	





Example	


begin!
    x := y + z;       (* S1 *)!
    wait(sem);        (* S2 *)!
    a := b * c – x;   (* S3 *)!
end!

•  Requirements:	


–  lub(y, z) ≤ x	


–  lub(b, c, x) ≤ a	


–  sem ≤ a	



•  Because fglb(S2) = a and shared(S2) = sem	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #8	





Concurrent Loops	



•  Similar, but wait in loop affects all statements in 
loop	


–  Because if flow of control loops, statements in loop 

before wait may be executed after wait	


•  Requirements	



–  Loop terminates	


–  All statements S1, …, Sn in loop secure	


–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)	



•  Where t1, …, tm are variables assigned to in loop	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #9	





Loop Example	


while i < n do begin!
    a[i] := item;    (* S1 *)!
    wait(sem);       (* S2 *)!
    i := i + 1;      (* S3 *)!
end!

•  Conditions for this to be secure:	


–  Loop terminates, so this condition met	


–  S1 secure if lub(i, item) ≤ a[i]	


–  S2 secure if sem ≤ i and sem ≤ a[i]	


–  S3 trivially secure	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #10	





cobegin/coend	


cobegin!
     x := y + z;       (* S1 *)!
     a := b * c – y;   (* S2 *)!
coend	


•  No information flow among statements	



–  For S1, lub(y, z) ≤ x	


–  For S2, lub(b, c, y) ≤ a	



•  Security requirement is both must hold	


–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #11	





Soundness	



•  Above exposition intuitive	


•  Can be made rigorous:	



– Express flows as types	


– Equate certification to correct use of types	


– Checking for valid information flows same as 

checking types conform to semantics imposed 
by security policy	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #12	





Execution-Based Mechanisms	



•  Detect and stop flows of information that violate 
policy	


–  Done at run time, not compile time	



•  Obvious approach: check explicit flows	


–  Problem: assume for security, x ≤ y	



if x = 1 then y := a;	


–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #13	





Fenton’s Data Mark Machine	



•  Each variable has an associated class	


•  Program counter (PC) has one too	


•  Idea: branches are assignments to PC, so 

you can treat implicit flows as explicit flows	


•  Stack-based machine, so everything done in 

terms of pushing onto and popping from a 
program stack	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #14	





Instruction Description	



•  skip means instruction not executed	


•  push(x, x) means push variable x and its 

security class x onto program stack	


•  pop(x, x) means pop top value and security 

class from program stack, assign them to 
variable x and its security class x 
respectively	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #15	





Instructions	


•   x := x + 1 (increment)	



–  Same as:	


!if PC ≤ x then x := x + 1 else skip!

•   if x = 0 then goto n else x := x – 1 (branch 
and save PC on stack)	


–  Same as:	


!if x = 0 then begin!
!!push(PC, PC); PC := lub{PC, x}; PC := n;!
  end else if PC ≤ x then!
!!x := x - 1!
!else!
!!skip;!

May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #16	





More Instructions	


•   if’ x = 0 then goto n else x := x – 1 

(branch without saving PC on stack)	


–  Same as:	


!if x = 0 then!
!!if x ≤ PC then PC := n else skip!
!else!
!!if PC ≤ x then x := x - 1 else skip!

May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #17	





More Instructions	



•   return (go to just after last if)	


–  Same as:	


!pop(PC, PC);!

•   halt (stop)	


–  Same as:	


!if program stack empty then halt!

–  Note stack empty to prevent user obtaining information 
from it after halting	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #18	





Example Program	


1   if x = 0 then goto 4 else x := x - 1!
2   if z = 0 then goto 6 else z := z - 1!
3   halt!
4   z := z + 1!
5   return!
6   y := y + 1!
7   return!
•  Initially x = 0 or x = 1, y = 0, z = 0	


•  Program copies value of x to y	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #19	





Example Execution!
x 	

y 	

z 	

PC 	

PC 	

stack 	

check	


1 	

0 	

0 	

1 	

Low 	

—	


0 	

0 	

0 	

2 	

Low 	

— 	

 	

Low ≤ x	


0 	

0 	

0 	

6 	

z 	

(3, Low)	


0 	

1 	

0 	

7 	

z 	

(3, Low) 	

PC ≤ y	


0 	

1 	

0 	

3 	

Low 	

—	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #20	





Handling Errors	



•  Ignore statement that causes error, but 
continue execution	


–  If aborted or a visible exception taken, user 

could deduce information	


– Means errors cannot be reported unless user has 

clearance at least equal to that of the 
information causing the error	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #21	





Variable Classes	



•  Up to now, classes fixed	


– Check relationships on assignment, etc.	



•  Consider variable classes	


– Fenton’s Data Mark Machine does this for PC	


– On assignment of form y := f(x1, …, xn), y 

changed to lub(x1, …, xn)	


– Need to consider implicit flows, also	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #22	





Example Program	


(* Copy value from x to y!
 * Initially, x is 0 or 1 *)!
proc copy(x: int class { x };!
! ! ! !var y: int class { y })!

var z: int class variable { Low };!
begin!
!y := 0;!
!z := 0;!
!if x = 0 then z := 1;!
!if z = 0 then y := 1;!

end;!

•  z changes when z assigned to	


•  Assume y <  x!
May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #23	





Analysis of Example	


•  x = 0	



–   z := 0 sets z to Low	


–   if x = 0 then z := 1 sets z to 1 and z to x	


–   So on exit, y = 0	



•  x = 1	


–   z := 0 sets z to Low	


–   if z = 0 then y := 1 sets y to 1 and checks that 

lub{Low, z} ≤ y	


–   So on exit, y = 1	



•  Information flowed from x to y even though y < x	


May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #24	





Handling This (1)	



•  Fenton’s Data Mark Machine detects 
implicit flows violating certification rules	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #25	





Handling This (2)	



•  Raise class of variables assigned to in conditionals 
even when branch not taken	



•  Also, verify information flow requirements even 
when branch not taken	



•  Example:	


–  In if x = 0 then z := 1, z raised to x whether or not 

x = 0	


–  Certification check in next statement, that z ≤ y, fails, as 

z = x from previous statement, and y ≤ x	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #26	





Handling This (3)	



•  Change classes only when explicit flows occur, 
but all flows (implicit as well as explicit) force 
certification checks	



•  Example	


–  When x = 0, first “if” sets z to Low then checks x ≤ z	


–  When x = 1, first “if” checks that x ≤ z	


–  This holds if and only if x = Low	



•  Not possible as y < x = Low and there is no such class	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #27	





Examples	



•  Use access controls of various types to 
inhibit information flows	



•  Security Pipeline Interface	


– Analyzes data moving from host to destination	



•  Secure Network Server Mail Guard	


– Controls flow of data between networks that 

have different security classifications	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #28	





Security Pipeline Interface	



•  SPI analyzes data going to, from host	


–  No access to host main memory	


–  Host has no control over SPI	



host	



second disk	



first disk	

SPI	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #29	





Use	


•  Store files on first disk	


•  Store corresponding crypto checksums on second 

disk	


•  Host requests file from first disk	



–  SPI retrieves file, computes crypto checksum	


–  SPI retrieves file’s crypto checksum from second disk	


–  If a match, file is fine and forwarded to host	


–  If discrepancy, file is compromised and host notified	



•  Integrity information flow restricted here	


–  Corrupt file can be seen but will not be trusted	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #30	





Secure Network Server Mail 
Guard (SNSMG)	



•  Filters analyze outgoing messages	


–  Check authorization of sender	


–  Sanitize message if needed (words and viruses, etc.)	



•  Uses type checking to enforce this	


–  Incoming, outgoing messages of different type	


–  Only appropriate type can be moved in or out	



MTA	

 MTA	



out	

 in	



filters	


SECRET 
computer	



UNCLASSIFIED 
computer	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #31	





Confinement	



•  What is the problem?	


•  Isolation: virtual machines, sandboxes	


•  Detecting covert channels	



May 15, 2013	

 ECS 235B Spring Quarter 2013	

 Slide #32	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Example Problem	



•  Server balances bank accounts for clients	


•  Server security issues:	



– Record correctly who used it	


– Send only balancing info to client	



•  Client security issues:	


– Log use correctly	


– Do not save or retransmit data client sends	



Slide #33	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Generalization	



•  Client sends request, data to server	


•  Server performs some function on data	


•  Server returns result to client	


•  Access controls:	



–  Server must ensure the resources it accesses on behalf 
of client include only resources client is authorized to 
access	



–  Server must ensure it does not reveal client’s data to 
any entity not authorized to see the client’s data	



Slide #34	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Confinement Problem	



•  Problem of preventing a server from leaking 
information that the user of the service 
considers confidential	



Slide #35	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Total Isolation	



•  Process cannot communicate with any other 
process	



•  Process cannot be observed	


	


Impossible for this process to leak information	



– Not practical as process uses observable 
resources such as CPU, secondary storage, 
networks, etc.	



Slide #36	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Example	


•  Processes p, q not allowed to communicate	



–  But they share a file system!	


•  Communications protocol:	



–  p sends a bit by creating a file called 0 or 1, then a 
second file called send	



•  p waits until send is deleted before repeating to send another 
bit	



–  q waits until file send exists, then looks for file 0 or 1; 
whichever exists is the bit	



•  q then deletes 0, 1, and send and waits until send is recreated 
before repeating to read another bit	



Slide #37	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Covert Channel	



•  A path of communication not designed to be 
used for communication	



•  In example, file system is a (storage) covert 
channel	



Slide #38	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Rule of Transitive Confinement	



•  If p is confined to prevent leaking, and it 
invokes q, then q must be similarly confined 
to prevent leaking	



•  Rule: if a confined process invokes a second 
process, the second process must be as 
confined as the first	



Slide #39	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Lipner’s Notes	



•  All processes can obtain rough idea of time	


– Read system clock or wall clock time	


– Determine number of instructions executed	



•  All processes can manipulate time	


– Wait some interval of wall clock time	


– Execute a set number of instructions, then 

block	



Slide #40	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Kocher’s Attack	


•  This computes x = az mod n, where z = z0 … zk–1	


	


x := 1; atmp := a;!
for i := 0 to k–1 do begin!
!if zi = 1 then!
! !x := (x * atmp) mod n;!
!atmp := (atmp * atmp) mod n;!
end!
result := x;!

•  Length of run time related to number of 1 bits in z	


Slide #41	





May 15, 2013	

 ECS 235B Spring Quarter 2013	



Isolation	


•  Present process with environment that appears to 

be a computer running only those processes being 
isolated	


–  Process cannot access underlying computer system, any 

process(es) or resource(s) not part of that environment	


–  A virtual machine	



•  Run process in environment that analyzes actions 
to determine if they leak information	


–  Alters the interface between process(es) and computer	



Slide #42	




