
Lecture 20	

•  Compiler-based mechanisms	

•  Execution-based mechanisms	

•  The confinement problem	

•  Isolation: virtual machines, sandboxes	

•  Covert channels	

– Detection	

– Mitigation	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #1	

Procedure Calls	

tm(a, b);!

From previous slides, to be secure, lub(x, i) ≤ y must hold	

•  In call, x corresponds to a, y to b	

•  Means that lub(a, i) ≤ b, or a ≤ b 	

More generally:	

proc pn(i1, . . ., im: int; var o1, . . ., on: int) !
begin S end;	

•  S must be secure	

•  For all j and k, if ij ≤ ok, then xj ≤ yk	

•  For all j and k, if oj ≤ ok, then yj ≤ yk	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #2	

Exceptions	

proc copy(x: int class { x };!
 var y: int class Low)!
var sum: int class { x };!
 z: int class Low;!
begin!
 y := z := sum := 0;!
 while z = 0 do begin!
 sum := sum + x;!
 y := y + 1;!
 end!
end!

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #3	

Exceptions (cont)	

•  When sum overflows, integer overflow trap	

–  Procedure exits	

–  Value of x is MAXINT/y	

–  Info flows from y to x, but x ≤ y never checked	

•  Need to handle exceptions explicitly	

–  Idea: on integer overflow, terminate loop	

on integer_overflow_exception sum do z := 1;!

–  Now info flows from sum to z, meaning sum ≤ z	

–  This is false (sum = { x } dominates z = Low)	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #4	

Infinite Loops	

proc copy(x: int 0..1 class { x };!
 var y: int 0..1 class Low)!
begin!
 y := 0;!
 while x = 0 do!
 (* nothing *);!
 y := 1;!
end!
•  If x = 0 initially, infinite loop	

•  If x = 1 initially, terminates with y set to 1	

•  No explicit flows, but implicit flow from x to y	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #5	

Semaphores	

Use these constructs:	

wait(x): if x = 0 then block until x > 0; x := x – 1;!
signal(x): x := x + 1;	

–  x is semaphore, a shared variable	

– Both executed atomically	

Consider statement	

wait(sem); x := x + 1;!

•  Implicit flow from sem to x	

– Certification must take this into account!	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #6	

Flow Requirements	

•  Semaphores in signal irrelevant	

–  Don’t affect information flow in that process	

•  Statement S is a wait	

–  shared(S): set of shared variables read	

•  Idea: information flows out of variables in shared(S)	

–  fglb(S): glb of assignment targets following S	

–  So, requirement is shared(S) ≤ fglb(S)	

•  begin S1; . . . Sn end	

–  All Si must be secure	

–  For all i, shared(Si) ≤ fglb(Si)	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #7	

Example	

begin!
 x := y + z; (* S1 *)!
 wait(sem); (* S2 *)!
 a := b * c – x; (* S3 *)!
end!

•  Requirements:	

–  lub(y, z) ≤ x	

–  lub(b, c, x) ≤ a	

–  sem ≤ a	

•  Because fglb(S2) = a and shared(S2) = sem	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #8	

Concurrent Loops	

•  Similar, but wait in loop affects all statements in
loop	

–  Because if flow of control loops, statements in loop

before wait may be executed after wait	

•  Requirements	

–  Loop terminates	

–  All statements S1, …, Sn in loop secure	

–  lub(shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)	

•  Where t1, …, tm are variables assigned to in loop	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #9	

Loop Example	

while i < n do begin!
 a[i] := item; (* S1 *)!
 wait(sem); (* S2 *)!
 i := i + 1; (* S3 *)!
end!

•  Conditions for this to be secure:	

–  Loop terminates, so this condition met	

–  S1 secure if lub(i, item) ≤ a[i]	

–  S2 secure if sem ≤ i and sem ≤ a[i]	

–  S3 trivially secure	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #10	

cobegin/coend	

cobegin!
 x := y + z; (* S1 *)!
 a := b * c – y; (* S2 *)!
coend	

•  No information flow among statements	

–  For S1, lub(y, z) ≤ x	

–  For S2, lub(b, c, y) ≤ a	

•  Security requirement is both must hold	

–  So this is secure if lub(y, z) ≤ x ∧ lub(b, c, y) ≤ a	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #11	

Soundness	

•  Above exposition intuitive	

•  Can be made rigorous:	

– Express flows as types	

– Equate certification to correct use of types	

– Checking for valid information flows same as

checking types conform to semantics imposed
by security policy	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #12	

Execution-Based Mechanisms	

•  Detect and stop flows of information that violate
policy	

–  Done at run time, not compile time	

•  Obvious approach: check explicit flows	

–  Problem: assume for security, x ≤ y	

if x = 1 then y := a;	

–  When x ≠ 1, x = High, y = Low, a = Low, appears okay

—but implicit flow violates condition!	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #13	

Fenton’s Data Mark Machine	

•  Each variable has an associated class	

•  Program counter (PC) has one too	

•  Idea: branches are assignments to PC, so

you can treat implicit flows as explicit flows	

•  Stack-based machine, so everything done in

terms of pushing onto and popping from a
program stack	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #14	

Instruction Description	

•  skip means instruction not executed	

•  push(x, x) means push variable x and its

security class x onto program stack	

•  pop(x, x) means pop top value and security

class from program stack, assign them to
variable x and its security class x
respectively	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #15	

Instructions	

•  x := x + 1 (increment)	

–  Same as:	

!if PC ≤ x then x := x + 1 else skip!

•  if x = 0 then goto n else x := x – 1 (branch
and save PC on stack)	

–  Same as:	

!if x = 0 then begin!
!!push(PC, PC); PC := lub{PC, x}; PC := n;!
 end else if PC ≤ x then!
!!x := x - 1!
!else!
!!skip;!

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #16	

More Instructions	

•  if’ x = 0 then goto n else x := x – 1

(branch without saving PC on stack)	

–  Same as:	

!if x = 0 then!
!!if x ≤ PC then PC := n else skip!
!else!
!!if PC ≤ x then x := x - 1 else skip!

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #17	

More Instructions	

•  return (go to just after last if)	

–  Same as:	

!pop(PC, PC);!

•  halt (stop)	

–  Same as:	

!if program stack empty then halt!

–  Note stack empty to prevent user obtaining information
from it after halting	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #18	

Example Program	

1  if x = 0 then goto 4 else x := x - 1!
2  if z = 0 then goto 6 else z := z - 1!
3  halt!
4  z := z + 1!
5  return!
6  y := y + 1!
7  return!
•  Initially x = 0 or x = 1, y = 0, z = 0	

•  Program copies value of x to y	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #19	

Example Execution!
x 	
y 	
z 	
PC 	
PC 	
stack 	
check	

1 	
0 	
0 	
1 	
Low 	
—	

0 	
0 	
0 	
2 	
Low 	
— 	
 	
Low ≤ x	

0 	
0 	
0 	
6 	
z 	
(3, Low)	

0 	
1 	
0 	
7 	
z 	
(3, Low) 	
PC ≤ y	

0 	
1 	
0 	
3 	
Low 	
—	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #20	

Handling Errors	

•  Ignore statement that causes error, but
continue execution	

–  If aborted or a visible exception taken, user

could deduce information	

– Means errors cannot be reported unless user has

clearance at least equal to that of the
information causing the error	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #21	

Variable Classes	

•  Up to now, classes fixed	

– Check relationships on assignment, etc.	

•  Consider variable classes	

– Fenton’s Data Mark Machine does this for PC	

– On assignment of form y := f(x1, …, xn), y

changed to lub(x1, …, xn)	

– Need to consider implicit flows, also	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #22	

Example Program	

(* Copy value from x to y!
 * Initially, x is 0 or 1 *)!
proc copy(x: int class { x };!
! ! ! !var y: int class { y })!

var z: int class variable { Low };!
begin!
!y := 0;!
!z := 0;!
!if x = 0 then z := 1;!
!if z = 0 then y := 1;!

end;!

•  z changes when z assigned to	

•  Assume y < x!
May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #23	

Analysis of Example	

•  x = 0	

–  z := 0 sets z to Low	

–  if x = 0 then z := 1 sets z to 1 and z to x	

–  So on exit, y = 0	

•  x = 1	

–  z := 0 sets z to Low	

–  if z = 0 then y := 1 sets y to 1 and checks that

lub{Low, z} ≤ y	

–  So on exit, y = 1	

•  Information flowed from x to y even though y < x	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #24	

Handling This (1)	

•  Fenton’s Data Mark Machine detects
implicit flows violating certification rules	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #25	

Handling This (2)	

•  Raise class of variables assigned to in conditionals
even when branch not taken	

•  Also, verify information flow requirements even
when branch not taken	

•  Example:	

–  In if x = 0 then z := 1, z raised to x whether or not

x = 0	

–  Certification check in next statement, that z ≤ y, fails, as

z = x from previous statement, and y ≤ x	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #26	

Handling This (3)	

•  Change classes only when explicit flows occur,
but all flows (implicit as well as explicit) force
certification checks	

•  Example	

–  When x = 0, first “if” sets z to Low then checks x ≤ z	

–  When x = 1, first “if” checks that x ≤ z	

–  This holds if and only if x = Low	

•  Not possible as y < x = Low and there is no such class	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #27	

Examples	

•  Use access controls of various types to
inhibit information flows	

•  Security Pipeline Interface	

– Analyzes data moving from host to destination	

•  Secure Network Server Mail Guard	

– Controls flow of data between networks that

have different security classifications	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #28	

Security Pipeline Interface	

•  SPI analyzes data going to, from host	

–  No access to host main memory	

–  Host has no control over SPI	

host	

second disk	

first disk	
SPI	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #29	

Use	

•  Store files on first disk	

•  Store corresponding crypto checksums on second

disk	

•  Host requests file from first disk	

–  SPI retrieves file, computes crypto checksum	

–  SPI retrieves file’s crypto checksum from second disk	

–  If a match, file is fine and forwarded to host	

–  If discrepancy, file is compromised and host notified	

•  Integrity information flow restricted here	

–  Corrupt file can be seen but will not be trusted	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #30	

Secure Network Server Mail
Guard (SNSMG)	

•  Filters analyze outgoing messages	

–  Check authorization of sender	

–  Sanitize message if needed (words and viruses, etc.)	

•  Uses type checking to enforce this	

–  Incoming, outgoing messages of different type	

–  Only appropriate type can be moved in or out	

MTA	
 MTA	

out	
 in	

filters	

SECRET
computer	

UNCLASSIFIED
computer	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #31	

Confinement	

•  What is the problem?	

•  Isolation: virtual machines, sandboxes	

•  Detecting covert channels	

May 15, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #32	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Example Problem	

•  Server balances bank accounts for clients	

•  Server security issues:	

– Record correctly who used it	

– Send only balancing info to client	

•  Client security issues:	

– Log use correctly	

– Do not save or retransmit data client sends	

Slide #33	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Generalization	

•  Client sends request, data to server	

•  Server performs some function on data	

•  Server returns result to client	

•  Access controls:	

–  Server must ensure the resources it accesses on behalf
of client include only resources client is authorized to
access	

–  Server must ensure it does not reveal client’s data to
any entity not authorized to see the client’s data	

Slide #34	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Confinement Problem	

•  Problem of preventing a server from leaking
information that the user of the service
considers confidential	

Slide #35	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Total Isolation	

•  Process cannot communicate with any other
process	

•  Process cannot be observed	

	

Impossible for this process to leak information	

– Not practical as process uses observable
resources such as CPU, secondary storage,
networks, etc.	

Slide #36	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Example	

•  Processes p, q not allowed to communicate	

–  But they share a file system!	

•  Communications protocol:	

–  p sends a bit by creating a file called 0 or 1, then a
second file called send	

•  p waits until send is deleted before repeating to send another
bit	

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit	

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit	

Slide #37	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Covert Channel	

•  A path of communication not designed to be
used for communication	

•  In example, file system is a (storage) covert
channel	

Slide #38	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Rule of Transitive Confinement	

•  If p is confined to prevent leaking, and it
invokes q, then q must be similarly confined
to prevent leaking	

•  Rule: if a confined process invokes a second
process, the second process must be as
confined as the first	

Slide #39	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Lipner’s Notes	

•  All processes can obtain rough idea of time	

– Read system clock or wall clock time	

– Determine number of instructions executed	

•  All processes can manipulate time	

– Wait some interval of wall clock time	

– Execute a set number of instructions, then

block	

Slide #40	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Kocher’s Attack	

•  This computes x = az mod n, where z = z0 … zk–1	

	

x := 1; atmp := a;!
for i := 0 to k–1 do begin!
!if zi = 1 then!
! !x := (x * atmp) mod n;!
!atmp := (atmp * atmp) mod n;!
end!
result := x;!

•  Length of run time related to number of 1 bits in z	

Slide #41	

May 15, 2013	
 ECS 235B Spring Quarter 2013	

Isolation	

•  Present process with environment that appears to

be a computer running only those processes being
isolated	

–  Process cannot access underlying computer system, any

process(es) or resource(s) not part of that environment	

–  A virtual machine	

•  Run process in environment that analyzes actions
to determine if they leak information	

–  Alters the interface between process(es) and computer	

Slide #42	

