
Lecture 21	

•  Isolation: virtual machines, sandboxes	

•  Covert channels	

–  Detection	

–  Mitigation	

•  The pump	

•  Why assurance?	

•  Trust and assurance	

•  Life cycle and assurance	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #1	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Isolation	

•  Present process with environment that appears to

be a computer running only those processes being
isolated	

–  Process cannot access underlying computer system, any

process(es) or resource(s) not part of that environment	

–  A virtual machine	

•  Run process in environment that analyzes actions
to determine if they leak information	

–  Alters the interface between process(es) and computer	

Slide #2	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Virtual Machine	

•  Program that simulates hardware of a
machine	

– Machine may be an existing, physical one or an

abstract one	

•  Why?	

– Existing OSes do not need to be modified	

•  Run under VMM, which enforces security policy	

•  Effectively, VMM is a security kernel	

Slide #3	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

VMM as Security Kernel	

•  VMM deals with subjects (the VMs)	

–  Knows nothing about the processes within the VM	

•  VMM applies security checks to subjects	

–  By transitivity, these controls apply to processes on VMs	

•  Thus, satisfies rule of transitive confinement	

Slide #4	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Example 1: KVM/370	

•  KVM/370 is security-enhanced version of
VM/370 VMM	

– Goal: prevent communications between VMs of

different security classes	

– Like VM/370, provides VMs with minidisks,

sharing some portions of those disks	

– Unlike VM/370, mediates access to shared

areas to limit communication in accordance
with security policy	

Slide #5	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Example 2: VAX/VMM	

•  Can run either VMS or Ultrix	

•  4 privilege levels for VM system	

– VM user, VM supervisor, VM executive, VM
kernel (both physical executive)	

•  VMM runs in physical kernel mode	

– Only it can access certain resources	

•  VMM subjects: users and VMs	

Slide #6	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Example 2	

•  VMM has flat file system for itself	

– Rest of disk partitioned among VMs	

– VMs can use any file system structure	

•  Each VM has its own set of file systems	

– Subjects, objects have security, integrity classes	

•  Called access classes	

– VMM has sophisticated auditing mechanism	

Slide #7	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Problem	

•  Physical resources shared	

– System CPU, disks, etc.	

•  May share logical resources	

– Depends on how system is implemented	

•  Allows covert channels	

Slide #8	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Sandboxes	

•  An environment in which actions are
restricted in accordance with security policy	

– Limit execution environment as needed	

•  Program not modified	

•  Libraries, kernel modified to restrict actions	

– Modify program to check, restrict actions	

•  Like dynamic debuggers, profilers	

Slide #9	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Examples Limiting Environment	

•  Java virtual machine	

–  Security manager limits access of downloaded
programs as policy dictates	

•  Sidewinder firewall	

–  Type enforcement limits access	

–  Policy fixed in kernel by vendor	

•  Domain Type Enforcement	

–  Enforcement mechanism for DTEL	

–  Kernel enforces sandbox defined by system

administrator	

Slide #10	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Modifying Programs	

•  Add breakpoints or special instructions to
source, binary code	

– On trap or execution of special instructions,

analyze state of process	

•  Variant: software fault isolation 	

– Add instructions checking memory accesses,
other security issues	

– Any attempt to violate policy causes trap	

Slide #11	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Example: Janus	

•  Implements sandbox in which system calls
checked	

– Framework does runtime checking	

– Modules determine which accesses allowed	

•  Configuration file	

–  Instructs loading of modules	

– Also lists constraints	

Slide #12	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Configuration File	

basic module!
basic!
!
define subprocess environment variables!
putenv IFS=“\t\n “ PATH=/sbin:/bin:/usr/bin TZ=PST8PDT!
!
deny access to everything except files under /usr!
path deny read,write *!
path allow read,write /usr/*!
allow subprocess to read files in library directories!
needed for dynamic loading!
path allow read /lib/* /usr/lib/* /usr/local/lib/*!
needed so child can execute programs!
path allow read,exec /sbin/* /bin/* /usr/bin/*!

Slide #13	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

How It Works	

•  Framework builds list of relevant system calls	

–  Then marks each with allowed, disallowed actions	

•  When monitored system call executed	

–  Framework checks arguments, validates that call is allowed for

those arguments	

•  If not, returns failure	

•  Otherwise, give control back to child, so normal system call proceeds	

Slide #14	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Use	

•  Reading MIME Mail: fear is user sets mail reader to

display attachment using Postscript engine	

–  Has mechanism to execute system-level commands	

–  Embed a file deletion command in attachment …	

•  Janus configured to disallow execution of any
subcommands by Postscript engine	

–  Above attempt fails	

Slide #15	

May 17, 2013	
 ECS 235B Spring Quarter 2013	

Sandboxes, VMs, and TCB	

•  Sandboxes, VMs part of trusted computing
bases	

– Failure: less protection than security officers,

users believe	

–  “False sense of security”	

•  Must ensure confinement mechanism
correctly implements desired security policy	

Slide #16	

Covert Channels	

•  Shared resources as communication paths	

•  Covert storage channel uses attribute of

shared resource	

–  Disk space, message size, etc.	

•  Covert timing channel uses temporal or
ordering relationship among accesses to
shared resource	

–  Regulating CPU usage, order of reads on disk	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #17	

Example Storage Channel	

•  Processes p, q not allowed to communicate	

–  But they share a file system!	

•  Communications protocol:	

–  p sends a bit by creating a file called 0 or 1, then a
second file called send	

•  p waits until send is deleted before repeating to send another
bit	

–  q waits until file send exists, then looks for file 0 or 1;
whichever exists is the bit	

•  q then deletes 0, 1, and send and waits until send is recreated
before repeating to read another bit	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #18	

Example Timing Channel	

•  System has two VMs	

–  Sending machine S, receiving machine R	

•  To send:	

–  For 0, S immediately relinquishes CPU	

•  For example, run a process that instantly blocks	

–  For 1, S uses full quantum	

•  For example, run a CPU-intensive process	

•  R measures how quickly it gets CPU	

–  Uses real-time clock to measure intervals between access to shared

resource (CPU)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #19	

Example Covert Channel	

•  Uses ordering of events; does not use clock	

•  Two VMs sharing disk cylinders 100 to 200	

–  SCAN algorithm schedules disk accesses	

–  One VM is High (H), other is Low (L)	

•  Idea: L will issue requests for blocks on cylinders 139 and
161 to be read	

–  If read as 139, then 161, it’s a 1 bit	

–  If read as 161, then 139, it’s a 0 bit	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #20	

How It Works	

•  L issues read for data on cylinder 150	

–  Relinquishes CPU when done; arm now at 150	

•  H runs, issues read for data on cylinder 140	

–  Relinquishes CPU when done; arm now at 140	

•  L runs, issues read for data on cylinders 139 and 161	

–  Due to SCAN, reads 139 first, then 161	

–  This corresponds to a 1	

•  To send a 0, H would have issued read for data on cylinder
160	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #21	

Analysis	

•  Timing or storage?	

–  Usual definition ⇒ storage (no timer, clock)	

•  Modify example to include timer	

–  L uses this to determine how long requests take to
complete	

–  Time to seek to 139 < time to seek to 161 ⇒ 1;
otherwise, 0	

•  Channel works same way	

–  Suggests it’s a timing channel; hence our definition	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #22	

Noisy vs. Noiseless	

•  Noiseless: covert channel uses resource
available only to sender, receiver	

•  Noisy: covert channel uses resource
available to others as well as to sender,
receiver	

–  Idea is that others can contribute extraneous

information that receiver must filter out to
“read” sender’s communication	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #23	

Key Properties	

•  Existence: the covert channel can be used to
send/receive information	

•  Bandwidth: the rate at which information
can be sent along the channel	

•  Goal of analysis: establish these properties
for each channel	

–  If you can eliminate the channel, great!	

–  If not, reduce bandwidth as much as possible	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #24	

Step #1: Detection	

•  Manner in which resource is shared controls
who can send, receive using that resource	

– Noninterference	

– Shared Resource Matrix Methodology	

–  Information flow analysis	

– Covert flow trees	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #25	

Noninterference	

•  View “read”, “write” as instances of
information transfer	

•  Then two processes can communicate if
information can be transferred between
them, even in the absence of a direct
communication path	

– A covert channel	

– Also sounds like interference …	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #26	

Example: SAT	

•  Secure Ada Target, multilevel security policy	

•  Approach:	

–  π(i, l) removes all instructions issued by subjects dominated by
level l from instruction stream i	

–  A(i, σ) state resulting from execution of i on state σ	

–  σ.v(s) describes subject s’s view of state σ	

•  System is noninterference-secure iff for all instruction
sequences i, subjects s with security level l(s), states σ,	

A(π(i, l(s)), σ).v(s) = A(i, σ).v(s)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #27	

Theorem	

•  Version of the Unwinding Theorem	

•  Let Σ be set of system states. A specification is

noninterference-secure if, for each subject s at security
level l(s), there exists an equivalence relation ≡: Σ×Σ such
that	

–  for σ1, σ2 ∈ Σ, when σ1 ≡ σ2, σ1.v(s) = σ2.v(s)	

–  for σ1, σ2 ∈ Σ and any instruction i, when σ1 ≡ σ2, A(i, σ1) ≡ A(i,
σ2)	

–  for σ ∈ Σ and instruction stream i, if π(i, l(s)) is empty, A(π(i, l(s)),
σ).v(s) = σ.v(s)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #28	

Intuition	

•  System is noninterference-secure if:	

– Equivalent states have the same view for each

subject	

– View remains unchanged if any instruction is

executed	

–  Instructions from higher-level subjects do not

affect the state from the viewpoint of the lower-
level subjects	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #29	

Analysis of SAT	

•  Focus on object creation instruction and
readable object set	

•  In these specifications:	

–  s subject with security level l(s)	

–  o object with security level l(o), type τ(o)	

– σ current state	

– Set of existing objects listed in a global object

table T(σ)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #30	

Specification 1	

•  object_create:	

[σʹ′ = object_create(s,o,l(o),τ(o),σ) ∧ σʹ′ ≠ σ]	

⇔	

[o ∉ T(σ) ∧ l(s) ≤ l(o)]	

•  The create succeeds if, and only if, the object does not yet
exist and the clearance of the object will dominate the
clearance of its creator	

–  In accord with the “writes up okay” idea	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #31	

Specification 2	

•  readable object set: set of existing objects that subject

could read	

–  can_read(s, o, σ) true if in state σ, o is of a type that s can read

(ignoring permissions)	

•  o ∉ readable(s, σ) ⇔ [o ∉ T(σ) ∨	

¬(l(o) ≤ l(s)) ∨ ¬(can_read(s, o, σ))]	

•  Can’t read a nonexistent object, one with a security level

that the subject’s security level does not dominate, or
object of the wrong type	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #32	

Specification 3	

•  SAT enforces tranquility	

–  Adding object to readable set means creating new object	

•  Add to readable set:	

[o ∉ readable(s, σ) ∧ o ∈ readable(s, σʹ′)] ⇔ [σʹ′ =
object_create(s,o,l(o),τ(o),σ) ∧ o ∉ T(σ) ∧ l(sʹ′) ≤ l(o) ≤ l(s) ∧ can_read(s,
o, σʹ′)]	

•  Says object must be created, levels and discretionary access controls
set properly	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #33	

Check for Covert Channels	

•  σ1, σ2 the same except:	

–  o exists only in latter	

– ¬(l(o) ≤ l(s))	

•  Specification 2:	

–  o ∉ readable(s, σ1) { o doesn’t exist in σ1}	

–  o ∉ readable(s, σ2) { ¬(l(o) ≤ l(s)) }	

•  Thus σ1 ≡ σ2	

– Condition 1 of theorem holds	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #34	

Continue Analysis	

•  sʹ′ issues command to create o with:	

–  l(o) = l(s)	

–  of type with can_read(s, o, σ1ʹ′)	

•  σ1ʹ′ state after object_create(sʹ′, o, l(o), τ(o), σ1)	

•  Specification 1	

–  σ1ʹ′ differs from σ1 with o in T(σ1)	

•  New entry satisfies:	

–  can_read(s, o, σ1ʹ′)	

–  l(sʹ′) ≤ l(o) ≤ l(s), where sʹ′ created o	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #35	

Continue Analysis	

•  o exists in σ2 so:	

σ2ʹ′ = object_create(sʹ′, o, σ2) = σ2	

•  But this means	

¬[A(object_create(sʹ′, o, l(o), τ(o), σ2), σ2) ≡
A(object_create(sʹ′, o, l(o), τ(o), σ1), σ1)]	

–  Because create fails in σ2 but succeeds in σ1	

•  So condition 2 of theorem fails	

•  This implies a covert channel as system is not

noninterference-secure	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #36	

Example Exploit	

•  To send 1:	

–  High subject creates high object	

–  Recipient tries to create same object but at low	

•  Creation fails, but no indication given	

–  Recipient gives different subject type permission to read, write

object	

•  Again fails, but no indication given	

–  Subject writes 1 to object, reads it	

•  Read returns nothing	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #37	

Example Exploit	

•  To send 0:	

–  High subject creates nothing	

–  Recipient tries to create same object but at low	

•  Creation succeeds as object does not exist	

–  Recipient gives different subject type permission to read, write

object	

•  Again succeeds	

–  Subject writes 1 to object, reads it	

•  Read returns 1	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #38	

Use	

•  Can analyze covert storage channels	

– Noninterference techniques reason in terms of

security levels (attributes of objects)	

•  Covert timing channels much harder	

– You would have to make ordering an attribute
of the objects in some way	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #39	

SRMM	

•  Shared Resource Matrix Methodology	

•  Goal: identify shared channels, how they are

shared	

•  Steps:	

–  Identify all shared resources, their visible attributes
[rows]	

–  Determine operations that reference (read), modify
(write) resource [columns]	

–  Contents of matrix show how operation accesses the
resource	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #40	

Example	

•  Multilevel security model	

•  File attributes:	

–  existence, owner, label, size	

•  File manipulation operations:	

–  read, write, delete, create	

–  create succeeds if file does not exist; gets creator as owner,

creator’s label	

–  others require file exists, appropriate labels	

•  Subjects:	

–  High, Low	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #41	

Shared Resource Matrix	

read	
 write	
 delete	
 create	

existence	
 R	
 R	
 R, M	
 R, M	

owner	
 R	
 M	

label	
 R	
 R	
 R	
 M	

size	
 R	
 M	
 M	
 M	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #42	

Covert Storage Channel	

•  Properties that must hold for covert storage
channel:	

1.  Sending, receiving processes have access to

same attribute of shared object;	

2.  Sender can modify that attribute;	

3.  Receiver can reference that attribute; and	

4.  Mechanism for starting processes, properly

sequencing their accesses to resource	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #43	

Example	

•  Consider attributes with both R, M in rows	

•  Let High be sender, Low receiver	

•  create operation both references, modifies existence

attribute	

–  Low can use this due to semantics of create	

•  Need to arrange for proper sequencing accesses to
existence attribute of file (shared resource)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #44	

Use of Channel	

–  3 files: ready, done, 1bit	

–  Low creates ready at High level	

–  High checks that file exists	

–  If so, to send 1, it creates 1bit; to send 0, skip	

–  Delete ready, create done at High level	

–  Low tries to create done at High level	

–  On failure, High is done	

–  Low tries to create 1bit at level High	

–  Low deletes done, creates ready at High level	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #45	

Covert Timing Channel	

•  Properties that must hold for covert timing

channel:	

1. Sending, receiving processes have access to same

attribute of shared object;	

2. Sender, receiver have access to a time reference (wall

clock, timer, event ordering, …);	

3. Sender can control timing of detection of change to that

attribute by receiver; and	

4. Mechanism for starting processes, properly sequencing

their accesses to resource	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #46	

Example	

•  Revisit variant of KVM/370 channel	

–  Sender, receiver can access ordering of requests by disk
arm scheduler (attribute)	

–  Sender, receiver have access to the ordering of the
requests (time reference)	

–  High can control ordering of requests of Low process
by issuing cylinder numbers to position arm
appropriately (timing of detection of change)	

–  So whether channel can be exploited depends on
whether there is a mechanism to (1) start sender,
receiver and (2) sequence requests as desired	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #47	

Uses of SRM Methodology	

•  Applicable at many stages of software life cycle

model	

–  Flexbility is its strength	

•  Used to analyze Secure Ada Target	

–  Participants manually constructed SRM from flow

analysis of SAT model	

–  Took transitive closure	

–  Found 2 covert channels	

•  One used assigned level attribute, another assigned type
attribute	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #48	

Summary	

•  Methodology comprehensive but incomplete	

–  How to identify shared resources?	

–  What operations access them and how?	

•  Incompleteness a benefit	

–  Allows use at different stages of software engineering life cycle	

•  Incompleteness a problem	

–  Makes use of methodology sensitive to particular stage of software

development	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #49	

Measuring Capacity	

•  Intuitively, difference between
unmodulated, modulated channel	

– Normal uncertainty in channel is 8 bits	

– Attacker modulates channel to send

information, reducing uncertainty to 5 bits	

– Covert channel capacity is 3 bits	

•  Modulation in effect fixes those bits	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #50	

Formally	

•  Inputs:	

–  A input from Alice (sender)	

–  V input from everyone else	

–  X output of channel	

•  Capacity measures uncertainty in X given A	

•  In other terms: maximize	

I(A; X) = H(X) – H(X | A)	

	
with respect to A	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #51	

Example (continued)	

•  If A, V independent, p = p(A=0), q = p(V=0):	

–  p(A=0, V=0) = pq	

–  p(A=1, V=0) = (1–p)q	

–  p(A=0, V=1) = p(1–q)	

–  p(A=1, V=1) = (1–p)(1–q)	

•  So	

–  p(X=0) = p(A=0, V=0) + p(A=1, V=1) = pq + (1–p)(1–q)	

–  p(X=1) = p(A=0, V=1) + p(A=1, V=0) = (1–p)q + p(1–q)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #52	

More Example	

•  Also:	

–  p(X=0|A=0) = q	

–  p(X=0|A=1) = 1–q	

–  p(X=1|A=0) = 1–q	

–  p(X=1|A=1) = q	

•  So you can compute:	

–  H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]	

–  H(X|A) = –q lg q – (1–q) lg (1–q)	

–  I(A;X) = H(X)–H(X|A)	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #53	

I(A;X)	

I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –	

	
 	
[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +	

	
 	
q lg q + (1 – q) lg (1 – q)	

•  Maximum when p = 0.5; then	

I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)	

•  So, if V constant, q = 0, and I(A;X) = 1	

•  Also, if q = p = 0.5, I(A;X) = 0	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #54	

Analyzing Capacity	

•  Assume a noisy channel	

•  Examine covert channel in MLS database

that uses replication to ensure availability	

–  2-phase commit protocol ensures atomicity	

– Coordinator process manages global execution	

– Participant processes do everything else	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #55	

How It Works	

•  Coordinator sends message to each participant

asking whether to abort or commit transaction	

–  If any says “abort”, coordinator stops	

•  Coordinator gathers replies	

–  If all say “commit”, sends commit messages back to

participants	

–  If any says “abort”, sends abort messages back to

participants	

–  Each participant that sent commit waits for reply; on

receipt, acts accordingly	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #56	

Exceptions	

•  Protocol times out, causing party to act as if
transaction aborted, when:	

– Coordinator doesn’t receive reply from

participant	

– Participant who sends a commit doesn’t receive

reply from coordinator	

May 17, 2013	
 ECS 235B Spring Quarter 2013	
 Slide #57	

