Decidability

January 16, 2014

- Mono-operational command case
- General case

2 Protection Systems

- Take-Grant Systems
- SPM

Protection Systems

What is "Secure"?

Leaking

Adding a generic right r where there was not one is *leaking*

Safe

If a system S, beginning in initial state s_0 , cannot leak right r, it is *safe* with respect to the right r.

Here, "safe" = "secure" for an abstract model

Protection Systems

What is Does "Decidable" Mean?

Safety Question

Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?

Security •00 •000000000 Protection Systems

Mono-operational command case

Mono-Operational Commands

Answer:			
Yes!			

Proof sketch:

Consider minimal sequence of commands c_1, \ldots, c_k to leak the right

Can omit **delete**, **destroy**

Can merge all creates into one

Worst case: insert every right into every entry; with s subjects, o objects, and n rights initially, upper bound is $k \le n(s+1)(o+1)$

Proof (1)

- Consider minimal sequences of commands (of length m) needed to leak r from system with initial state s₀
 - Identify each command by the type of primitive operation it invokes
- Cannot test for *absence* of rights, so **delete**, **destroy** not relevant
 - Ignore them
- Reorder sequences of commands so all **create**s come first
 - Can be done because enters require subject, object to exist
- Commands after these creates check only for existence of right

Proof (2)

It can be shown (see exercise):

- Suppose s_1, s_2 are created, and commands test rights in $A[s_1, o_1], A[s_2, o_2]$
- Doing the same tests on $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$ gives same result
- Thus all **create**s unnecessary
 - Unless s_0 is empty; then you need to create it (1 create)
- In *s*₀:
 - |*S*₀| number of subjects, |*O*₀| number of objects, *n* number of (generic) rights
- In worst case, 1 create
 - So a total of at most $(|S_0| + 1)(|O_0| + 1)$ elements
- So $m \le n(|S_0| + 1)(|O_0| + 1)$

Outline	Security	Protection Systems	
	000 00000000	000000000000000000000000000000000000000	
General case			
General Case			

Answer:			
No			

Proof sketch:

- Show arbitrary Turing machine can be reduced to safety problem
- 2 Then deciding safety problem means deciding the halting problem

\sim			
U	uτ	line	

General case

Turing Machine Review

- Infinite tape in one direction
- States K, symbols M, distinguished blank ǿ
- State transition function δ(k, m) = (k', m', L) in state k with symbol m under the TM head replace m with m', move head left one square, enter state k'
- Halting state is q_f

Turing machine with head over square 3 on tape, in state k and its representation as an access control matrix o is own right e is end right

Outline	Security ○○○ ○○○●○○○○○○	Protection Systems 000000000000000000000000000000000000
General case		

After $\delta(k, C) = (k_1, X, R)$, where k is the previous state and k_1 the current state

Outline	Security ○○○ ○○○○○○○○○○○	Protection Systems 000000000000000000000000000000000000
General case		

Command Mapping

 $\delta(k, C) = (k_1, X, R)$ at intermediate becomes:

command $c_{k,C}(s_i, s_{i+1})$ if o in $A[s_i, s_{i+1}]$ and k in $A[s_i, s_i]$ and C in $A[s_i, s_i]$ then

```
delete k from A[s_i, s_i];
delete C from A[s_i, s_i];
enter X into A[s_i, s_i];
enter k_1 into A[s_{i+1}, s_{i+1}];
end
```

Outline	Security	
	000 00000000	00000000000000000000000000000000000000
General case		

Mapping

After $\delta(k_1, D) = (k_2, Y, R)$, where k_1 is the previous state and k_2 the current state

Outline	Security ○○○ ○○○○○●○○	Protection Systems 000000000000000000000000000000000000
General case		

Command Mapping

 $\delta(k_1, D) = (k_2, Y, R)$ at intermediate becomes:

command crightmost_{k,D}(s_i , s_{i+1}) if e in A[s_i , s_i] and k_1 in A[s_i , s_i] and D in A[s_i , s_i] then

```
delete e from A[s_i, s_i];

create subject s_{i+1};

enter o into A[s_i, s_{i+1}];

enter e into A[s_{i+1}, s_{i+1}];

delete k_1 from A[s_i, s_i];

delete D from A[s_i, s_i];

enter Y into A[s_i, s_i];

enter k_2 into A[s_{i+1}, s_{i+1}];

end
```

Outline	Security ○○○ ○○○○○○○○●○	Protection Systems
General case		

Rest of Proof

Protection system exactly simulates a Turing machine

- Exactly 1 end (e) right in access control matrix
- 1 right in entries corresponds to state
- Thus, at most 1 applicable command
- If Turing machine enters state q_f , then right has leaked
- If safety question decidable, then represent TM as protection system and determine if q_f leaks
 - This implies halting problem is decidable
- Conclusion: safety question undecidable

Outline	Security ○○○ ○○○○○○○○○●	Protection Systems 000000000000000000000000000000000000
General case		

Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Delete destroy, delete primitives; safety question is still undecidable
 - Such systems are called *monotonic*
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable

Take-Grant Systems

Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

0			

Take-Grant Systems

 \otimes

 $G \vdash_{x} G'$

 $G \vdash^* G'$

System

objects (passive entities like files, ...) subjects (active entities like users, processes ...) don't care (either a subject or an object) apply rewriting rule x (witness) to G to get G'apply a sequence of rewriting rules (witness) to G to get G' $R = \{t, g, \ldots\}$ set of rights

Protection Systems

Take-Grant Systems

Take, Grant Rules

Protection Systems

Take-Grant Systems

Create, Remove Rules

These four rules are the *de jure* rules

Protection Systems

Take-Grant Systems

Symmetry of Take and Grant

Protection Systems

Take-Grant Systems

Symmetry of Take and Grant

1 x creates (tg to new) **v**

Protection Systems

Take-Grant Systems

Symmetry of Take and Grant

x creates (tg to new) v
 x grants (g to v) to y

Protection Systems

Take-Grant Systems

Symmetry of Take and Grant

- **1 x** creates (tg to new) **v**
- **2 x** grants $(g \text{ to } \mathbf{v})$ to **y**
- **3 y** grants (β to **z**) to **v**

Protection Systems

Take-Grant Systems

Symmetry of Take and Grant

- **1 x** creates (tg to new) **v**
- **2 x** takes $(g \text{ to } \mathbf{v})$ from **x**
- **3 y** grants (β to **z**) to **v**
- **4 x** takes (β to **z**) from **v**

Outline	Security 000 00000000	Protection Systems 000000000000000000000000000000000000
Take-Grant Systems		

Islands

- tg-path: path of distinct vertices connected by edges labeled t or g
 - Call them *tg-connected*
- *island*: maximal *tg*-connected subject-only subgraph
 - Any right that a vertex in the island has, can be shared with any other vertex in the island

Take-Grant Systems

Initial, Terminal Spans

- *initial span* from **x** to **y**: **x** can give rights it has to **y**
 - **x**subject
 - *tg*-path between **x**, **y** with word in $\{\overrightarrow{t^*}\overrightarrow{g}\} \cup \{\nu\}$
- terminal span from x to y: x can get rights y has
 - xsubject
 - *tg*-path between **x**, **y** with word in $\{\vec{t^*}\} \cup \{\nu\}$

Outline	Security 000 00000000	Protection Systems 000000000000000000000000000000000000
Take-Grant Systems		

- bridge tg-path between subjects **x**, **y**, with associated word in $\{\overrightarrow{t^*}, \overleftarrow{t^*}, \overrightarrow{t^*}, \overrightarrow{g}, \overrightarrow{t^*}, \overrightarrow{g}, \overrightarrow{t^*}\}$
 - rights can be transferred between the two endpoints
 - not an island as intermediate vertices are objects

Outline	Security 000 00000000	Protection Systems
Take-Grant Systems		

Example

- \blacksquare islands: $\{\textbf{p},\textbf{u}\}, \{\textbf{w}\}, \{\textbf{y},\textbf{s}'\}$
- bridges: u, v, w; w, x, y
- **i** initial span: **p** (associated word ν)
- terminal span: $\mathbf{s}'\mathbf{s}$ (associated word \overrightarrow{t})

0	+I	n	~	
\circ	u			

Take-Grant Systems

can.share Predicate

can share $(r, \mathbf{x}, \mathbf{y}, G_0)$ holds if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only *de jure* rules and in G_n there is an edge from \mathbf{x} to \mathbf{y} labeled r

Take-Grant Systems

can.share Theorem

can-share(r, \mathbf{x} , \mathbf{y} , G_0) holds if, and only if, there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_0 , or the following hold simultaneously:

- there is an **s** in *G*₀ with an **s**-to-**y** edge labeled *r*;
- there is a subject $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' initially spans to \mathbf{x} ;
- there is a subject $\mathbf{s}' = \mathbf{s}$ or \mathbf{s}' terminally spans to \mathbf{s} ; and
- there are islands I₁,..., I_k connected by bridges, x' is in I₁, and s' is in I_k

Take-Grant Systems

Outline of Proof

- 1 s has r rights over y
- **2** \mathbf{s}' acquires r rights over \mathbf{y} from \mathbf{s}
 - Definition of terminal span
- **3** \mathbf{x}' acquires *r* rights over \mathbf{y} from \mathbf{s}'
 - Repeated application of sharing among vertices in islands, passing rights along bridges
- **4** \mathbf{x}' gives *r* rights over \mathbf{y} to \mathbf{x}
 - Definition of initial span

Take-Grant Systems

Interpretation

- Access control matrix is generic
 - Can be applied in any situation
- Take-Grant has specific rules, rights
 - Can be applied in situations matching rules, rights
- What states can evolve from a system that is modeled using the Take-Grant Protection Model?

Protection Systems

Take-Grant Systems

Example: Shared Buffer

Goal: \mathbf{p} , \mathbf{q} to communicate through shared buffer \mathbf{b} controlled by trusted entity \mathbf{s}

Protection Systems

Take-Grant Systems

Example: Shared Buffer

Goal: \mathbf{p} , \mathbf{q} to communicate through shared buffer \mathbf{b} controlled by trusted entity \mathbf{s}

1 s creates ($\{r, w\}$ to) new object b

Protection Systems

Take-Grant Systems

Example: Shared Buffer

Goal: \mathbf{p} , \mathbf{q} to communicate through shared buffer \mathbf{b} controlled by trusted entity \mathbf{s}

- **1** s creates ($\{r, w\}$ to) new object b
- **2** s grants $(\{r, w\}$ to b) to p

Protection Systems

Example: Shared Buffer

Goal: \mathbf{p} , \mathbf{q} to communicate through shared buffer \mathbf{b} controlled by trusted entity \mathbf{s}

- **1** s creates ($\{r, w\}$ to) new object b
- **2** s grants $(\{r, w\}$ to b) to p
- **3** s grants $(\{r, w\}$ to b) to q

Security 200 2000000000

Schematic Protection Model

 Protection type: entity label determining how control rights affect the entity

Set at creation and cannot be changed

- Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a *domain*)
 - Ticket is \mathbf{X}/r , where \mathbf{X} is entity and r right
- Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Outline		Protection Systems
	000 00000000	00000000000000000000000000000000000000
SPM		

- Idea: $link_i(\mathbf{X}, \mathbf{Y})$ if **X** can assert some control right over **Y**
- Conjunction of disjunction of:
 - $\mathbf{X}/z \in dom(\mathbf{X})$ • $\mathbf{X}/z \in dom(\mathbf{Y})$ • $\mathbf{Y}/z \in dom(\mathbf{X})$ • $\mathbf{Y}/z \in dom(\mathbf{Y})$ • true

0	÷	n	
\circ			

Protection Systems

SPM

Schematic Protection Model

Take-Grant:

$$link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/g \in dom(\mathbf{X}) \lor \mathbf{X}/t \in dom(\mathbf{Y})$$

Broadcast:
 $link(\mathbf{X}, \mathbf{Y}) = \mathbf{X}/b \in dom(\mathbf{X})$
Pull:
 $link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/p \in dom(\mathbf{Y})$

Outline		Protection Systems
	000	
SPM		

Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket **X**/*r*:*c* from *dom*(**Y**) to *dom*(**Z**)
 - **X**/ $rc \in dom(\mathbf{Y})$
 - *link*_{*i*}(**Y**, **X**)
 - $\tau(\mathbf{Y})/r:c \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- One filter function per link predicate

Outline		Protection Systems
	000	00000000000000000000000000000000000000
SPM		

c (() ()

Security 200 200000000

Example: Take-Grant Model

•
$$TS = \{ \text{ subjects } \}, TO = \{ \text{ objects } \}$$

•
$$RC = \{ tc, gc \}, RI = \{ rc, wc, ... \}$$

$$\blacksquare link(\mathbf{p},\mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \lor \mathbf{q}/g \in dom(\mathbf{p})$$

■ $f(\text{subject, subject}) = \{ \text{ subject, object } \} \times \{ tc, gc, rc, wc \}$

Outline		Protection Systems
	000 00000000	00000000000000000000000000000000000000
SPM		

Create Operation

- Must handle type, tickets of new entity
- Relation cc(a, b): subject of type a can create entity of type b
 cc for can create
- Rule of acyclic creates:

Outline	Security 000 00000000	Protection Systems ○○○○○○○○○○○○○ ○○○○○○○○○○○○○○○○○○○○○○
SPM		
Types		

cr(a, b): tickets created when subject of type a creates entity of type b

cr for create rule

B object:
$$cr(a, b) \subseteq \{b/r: c \in RI\}$$

• A gets $\mathbf{B}/r:c$ if and only if $b/r:c \in cr(a,b)$

■ Bsubject: cr(a, b) has 2 subsets

c $r_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**

- A gets $\mathbf{B}/r:c$ if and only if $b/r:c \in cr_P(a, b)$
- **B** gets $\mathbf{A}/r:c$ if and only if $a/r:c \in cr_C(a,b)$

0	+I		~
\circ	u		

SPM

Non-Distinct Types

0		

Protection Systems

SPM

Attenuating Create Rule

cr(a, b) is attenuating if: 1 $cr_C(a, b) \subseteq cr_P(a, b)$ and 2 $a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$

Security 200 2000000000

Example: Owner-Based Policy

 Users can create files, creator can give itself any inert rights over file

Attenuating, as graph is acyclic, loop free

Outline	Security 000 00000000	Protection Systems
SPM		

Example: Take-Grant

 Say subjects create subjects (type s), objects (type o), but get only inert rights over latter

•
$$cc = \{(s, s), (s, o)\}$$

•
$$cr_C(a, b) = \emptyset$$

$$cr_P(s,s) = \{s/tc, s/gc, s/rc, s/wc\}$$

$$cr_P(s,o) = \{o/rc, o/wc\}$$

 Not attenuating, as no *self* tickets provided; *subject* creates *subject*

SPM	00000

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 - Called a *maximal state*

Outline		Protection Systems
	000 00000000	00000000000000000000000000000000000000
SPM		

- System begins in initial state
- Authorized operation causes legal transition
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state

0	. 1			
0	ТΙ		e.	

SPM

More Definitions

- States represented by ^h
- Set of subjects SUB^h, entities ENT^h
- Link relation in context of state h is link^h
- Dom relation in context of state h is dom^h

0	. 1			
0	ТΙ		e.	

Security 000 000000000

- X, Y connected by one link or a sequence of linksFormally, either of these hold:
 - For some *i*, $link_i^h(\mathbf{X}, \mathbf{Y})$; or
 - There is a sequence of subjects $\mathbf{X}_0, \ldots, \mathbf{X}_n$ such that $link_i^h(\mathbf{X}, \mathbf{X}_0)$, $link_i^h(\mathbf{X}_n, \mathbf{Y})$, and for $k = 1, \ldots, n$, $link_i^h(\mathbf{X}_{k-1}, \mathbf{X}_k)$
- If multiple such paths, refer to $path_i^h(\mathbf{X}, \mathbf{Y})$

Security 200 200000000

Capacity $cap(path^{h}(\mathbf{X}, \mathbf{Y}))$

- Set of tickets that can flow over *path*^h(X, Y)
 - If link^h_i(X, Y): set of tickets that can be copied over the link (i.e., f_i(τ(X), τ(Y)))
 - Otherwise, set of tickets that can be copied over all links in the sequence of links making up the path^h(X, Y)
- Note: all tickets (except those for the final link) must be copyable

Outline	Security 000 00000000	Protection Systems
SPM		

Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be *m path^hs* between subjects X and Y in state *h*. Then *flow function*

$$flow^h: SUB^h \times SUB^h \rightarrow 2^{T \times R}$$

is:

$$\mathit{flow}^h(\mathbf{X},\mathbf{Y}) = igcup_{i=1,...,m} \mathit{cap}(\mathit{path}^h_i(\mathbf{X},\mathbf{Y}))$$

SPM

Properties of Maximal State

- Maximizes flow between all pairs of subjects
 - State is called *
 - Ticket in *flow**(X, Y) means there exists a sequence of operations that can copy the ticket from X to Y
- Questions
 - Is maximal state unique?
 - Does every system have one?

Security 200 2000000000

Formal Definition of Maximal State

- Definition: g ≤₀ h holds iff for all X, Y∈ SUB⁰, flow^g(X, Y) ⊆ flow^h(X, Y)
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h are equivalent states
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state m is maximal iff $h \leq_0 m$ for every derivable state h
- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class, answering first question (uniqueness of maximal state)

Outline	Security	Protection Systems	
	000 00000000	000000000000000000000000000000000000000	
SPM			
Useful Lemma			

Lemma. Given an arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$

\cap	line	
U		

Security 000 000000000

Proof of Useful Lemma

By induction on the size of HBASIS: For $H = \emptyset$, |H| = 0, claim is trivially true INDUCTION HYPOTHESIS: For |H| = n, claim holds INDUCTION STEP: |H'| = n + 1, where $H' = G \cup \{h\}$. By hypothesis, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$ Let M be an interleaving of histories of g, h, which:

- Preserves relative order of transitions in g, h
- Omits second create operation if duplicated

M ends up in state *m* If $path^{g}(\mathbf{X}, eY)$ for $\mathbf{X}, \mathbf{Y} \in SUB^{g}$, $path^{m}(\mathbf{X}, \mathbf{Y})$, so $g \leq_{0} m$ If $path^{h}(\mathbf{X}, eY)$ for $\mathbf{X}, \mathbf{Y} \in SUB^{h}$, $path^{m}(\mathbf{X}, \mathbf{Y})$, so $h \leq_{0} m$ Hence *m* is a maximal state in *H*'

Answer to "Does Every System Have a Maximal State"

Theorem: every system has a maximal state *

Outline of proof: Let K be the set of derivable states containing exactly one state from each equivalence class of derivable states

- Let $\mathbf{X}, \mathbf{Y} \in SUB^{0}$.
- Flow function's range is $2^{T \times R}$, so it can take on at most $|2^{T \times R}|$ values.
- There are $|SUB^0|^2$ pairs of subjects in SUB^0
- So at most $|2^{T \times R}| |SUB^0|^2$ distinct equivalence classes
- So *K* is finite

So the lemma's conditions hold, giving the answer "yes"