[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0)

Decidability

January 16, 2014

Slide 1 **ECS 235B**, Foundations of Information and Computer Security January 16, 2014

1 [Security](#page-2-0)

- **[Mono-operational command case](#page-4-0)**
- [General case](#page-7-0)

2 [Protection Systems](#page-16-0)

- [Take-Grant Systems](#page-16-0)
- ■ [SPM](#page-37-0)

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) (New Security S 00000000000000

What is "Secure"?

Leaking

Adding a generic right r where there was not one is *leaking*

Safe

If a system S, beginning in initial state s_0 , cannot leak right r, it is safe with respect to the right r .

Here, "safe" $=$ "secure" for an abstract model

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) (New Security S 00000000000000

What is Does "Decidable" Mean?

Safety Question

Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) (New Security S 000000000000000

[Mono-operational command case](#page-4-0)

Mono-Operational Commands

Proof sketch:

Consider minimal sequence of commands c_1, \ldots, c_k to leak the right

■ Can omit delete, destroy

■ Can merge all creates into one

Worst case: insert every right into every entry; with s subjects, o objects, and *n* rights initially, upper bound is $k \leq n(s + 1)(o + 1)$

Proof (1)

- **Consider minimal sequences of commands (of length** m **)** needed to leak r from system with initial state s_0
	- I Identify each command by the type of primitive operation it invokes
- Cannot test for absence of rights, so **delete**, **destroy** not relevant

Ignore them

- Reorder sequences of commands so all creates come first
	- \blacksquare Can be done because enters require subject, object to exist
- Commands after these creates check only for existence of right

Proof (2)

It can be shown (see exercise):

- Suppose s_1, s_2 are created, and commands test rights in $A[s_1, o_1], A[s_2, o_2]$
- Doing the same tests on $A[s_1, o_1]$ and $A[s_1, o_2] = A[s_1, o_2] \cup A[s_2, o_2]$ gives same result
- **Thus all creates unnecessary**

Unless s_0 is empty; then you need to create it (1 create)

 \blacksquare In so:

- $|S_0|$ number of subjects, $|O_0|$ number of objects,n number of (generic) rights
- \blacksquare In worst case, 1 create

So a total of at most $(|S_0|+1)(|O_0|+1)$ elements

So $m \le n(|S_0|+1)(|O_0|+1)$

Proof sketch:

- **1** Show arbitrary Turing machine can be reduced to safety problem
- 2 Then deciding safety problem means deciding the halting problem

Turing Machine Review

- \blacksquare Infinite tape in one direction
- States K, symbols M, distinguished blank \emptyset
- State transition function $\delta(k,m) = (k',m', L)$ in state k with symbol m under the TM head replace m with m', move head left one square, enter state k'
- **Halting state is** q_f

Turing machine with head over square 3 on tape, in state k and its representation as an access control matrix o is own right e is end right

After $\delta(k, C) = (k_1, X, R)$, where k is the previous state and k_1 the current state

Command Mapping

 $\delta(k, C) = (k_1, X, R)$ at intermediate becomes:

command $c_{k,C}(s_i, s_{i+1})$ if o in $A[s_i^{},s_{i+1}^{}]$ and k in $A[s_i^{},s_i^{}]$ and C in $A[s_i^{},s_i^{}]$ then

```
delete k from A[s_i,s_i];
    delete C from A[s_i,s_i];
    enter X into A[s_i,s_i];
   enter k_1 into A[s_{i+1}, s_{i+1}];
end
```


After $\delta(k_1, D) = (k_2, Y, R)$, where k_1 is the previous state and k_2 the current state

Command Mapping

 $\delta(k_1, D) = (k_2, Y, R)$ at intermediate becomes:

command crightmost_{k,D}(s_i , s_{i+1}) if e in $A[s_i,s_i]$ and k_1 in $A[s_i,s_i]$ and D in $A[s_i, s_i]$ then

```
delete e from A[s_i,s_i];
   create subject s_{i+1};
    enter o into A[s_i^-,s_{i+1}];
   enter e into A[s_{i+1}, s_{i+1}];
    delete k_1 from A[s_i,s_i];
    delete D from A[s_i,s_i];
    enter Y into A[s_i,s_i];
   enter k_2 into A[s_{i+1}, s_{i+1}];
end
```


Rest of Proof

Protection system exactly simulates a Turing machine

- Exactly 1 end (e) right in access control matrix
- 1 right in entries corresponds to state
- Thus, at most 1 applicable command
- If Turing machine enters state q_f , then right has leaked
- If safety question decidable, then represent TM as protection system and determine if q_f leaks
	- This implies halting problem is decidable
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- \blacksquare Delete create primitive; then safety question is complete in P-SPACE
- Delete **destroy, delete** primitives; safety question is still undecidable
	- Such systems are called *monotonic*
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable

[Take-Grant Systems](#page-16-0)

Take-Grant Protection Model

- A specific (not generic) system
	- \blacksquare Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

[Take-Grant Systems](#page-17-0)

 $G\vdash_{x} G'$

 $G \vdash^* G'$

System

 \bigcirc objects (passive entities like files, ...) subjects (active entities like users, processes . . .) ⊗ don't care (either a subject or an object) apply rewriting rule x (witness) to G to get G' apply a sequence of rewriting rules (witness) to G to get G' $R = \{t, g, \ldots\}$ set of rights

[Outline](#page-1-0) Communication Systems
 $\begin{array}{ccccccc}\n & & & & & \text{S}\text{-}\$ 00000000000000

[Take-Grant Systems](#page-18-0)

Take, Grant Rules

 \sim

[Outline](#page-1-0) Contraction Contraction Contraction Systems [Security](#page-2-0) Contraction Systems [Protection Systems](#page-16-0) (2009)
 0.000 00000000000000

[Take-Grant Systems](#page-19-0)

Create, Remove Rules

These four rules are the de jure rules

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0)

[Take-Grant Systems](#page-20-0)

Symmetry of Take and Grant

[Outline](#page-1-0) Contraction Systems
 $\begin{array}{ccc}\n & \text{Security} \\
 & \text{OOO} \\
\$ $\begin{array}{ccc}\n & \text{Security} \\
 & \text{OOO} \\
\$ $\begin{array}{ccc}\n & \text{Security} \\
 & \text{OOO} \\
\$

[Take-Grant Systems](#page-21-0)

Symmetry of Take and Grant

 \blacksquare x creates (tg to new) v

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 00000000000000

[Take-Grant Systems](#page-22-0)

Symmetry of Take and Grant

 \blacksquare x creates (tg to new) v 2 x grants $(g \text{ to } v)$ to y

 \sim

[Outline](#page-1-0) Contraction Contraction Contraction Systems [Security](#page-2-0) [Protection Systems](#page-16-0) Protection Systems → Protection Syst 00000000000000

[Take-Grant Systems](#page-23-0)

Symmetry of Take and Grant

- \blacksquare x creates (tg to new) v
- 2 x grants $(g \text{ to } v)$ to y
- 3 y grants (β to z) to v

 \sim

[Outline](#page-1-0) Contraction Contraction Contraction Systems [Security](#page-2-0) Contraction Systems Contraction Systems Contraction Systems Contraction Systems Contraction Contraction Systems Contraction Contraction Contraction Contraction C 00000000000000

[Take-Grant Systems](#page-24-0)

Symmetry of Take and Grant

- \blacksquare x creates (tg to new) v
- 2 x takes $(g \text{ to } v)$ from x
- 3 y grants (β to z) to v
- **4** x takes (β to z) from v

Islands

- **t** tg-path: path of distinct vertices connected by edges labeled t or g
	- \Box Call them tg-connected
- **island:** maximal tg-connected subject-only subgraph
	- Any right that a vertex in the island has, can be shared with any other vertex in the island

[Take-Grant Systems](#page-26-0)

Initial, Terminal Spans

- initial span from **x** to **y**: **x** can give rights it has to **y x**subject tg-path between **x**, **y** with word in $\{\overrightarrow{t^{*}} \overrightarrow{g}\} \cup \{\nu\}$ terminal span from x to y : x can get rights y has **x**subject
	- tg -path between **x**, **y** with word in $\{\overrightarrow{t^*}\} \cup \{\nu\}$

- bridge tg -path between subjects x , y , with associated word in $\{\overline{t^*, t^*, t^*, t^*g} \overline{t^*, t^*g} \overline{t^*, t^*g} \}$
	- \blacksquare rights can be transferred between the two endpoints
	- not an island as intermediate vertices are objects

Example

- islands: $\{p, u\}, \{w\}, \{y, s'\}$
- bridges: u, v, w, w, x, y
- initial span: **p** (associated word ν)
- terminal span: **s's** (associated word \overrightarrow{t})

[Take-Grant Systems](#page-29-0)

can·share Predicate

can·share(r, x, y, G_0) holds if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only de jure rules and in G_n there is an edge from **x** to **y** labeled r

[Take-Grant Systems](#page-30-0)

can·share Theorem

*can-share(r, x, y, G*₀) holds if, and only if, there is an edge from x to **y** labeled r in G_0 , or the following hold simultaneously:

- **there is an s in** G_0 **with an s-to-y edge labeled r;**
- there is a subject $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' initially spans to \mathbf{x} ;
- there is a subject $\mathbf{s}'=\mathbf{s}$ or \mathbf{s}' terminally spans to \mathbf{s} ; and
- there are islands l_1, \ldots, l_k connected by bridges, \mathbf{x}' is in l_1 , and s' is in I_k

[Take-Grant Systems](#page-31-0)

Outline of Proof

- **1** s has r rights over y
- 2 s' acquires r rights over **y** from s
	- Definition of terminal span
- \mathbf{s} \mathbf{x}' acquires r rights over \mathbf{y} from \mathbf{s}'
	- Repeated application of sharing among vertices in islands, passing rights along bridges
- $4\,$ **x** $'$ gives r rights over $\mathbf y$ to $\mathbf x$
	- Definition of initial span

[Take-Grant Systems](#page-32-0)

Interpretation

- Access control matrix is generic
	- Can be applied in any situation
- Take-Grant has specific rules, rights
	- Can be applied in situations matching rules, rights $\mathcal{L}_{\mathcal{A}}$
- ■ What states can evolve from a system that is modeled using the Take-Grant Protection Model?

 \sim

[Outline](#page-1-0) Contraction Contraction Contraction Systems [Security](#page-2-0) Contraction Systems Contraction Systems Contraction Systems Contraction Systems Contraction Contraction Systems Contraction Contraction Contraction Contraction C 00000000000000

[Take-Grant Systems](#page-33-0)

Example: Shared Buffer

Goal: p, q to communicate through shared buffer **b** controlled by trusted entity s

[Outline](#page-1-0) Contraction Contraction Contraction Systems [Security](#page-2-0) Contraction Systems Contraction Systems Contraction Systems Contraction Systems Contraction Contraction Systems Contraction Contraction Contraction Contraction C 00000000000000

[Take-Grant Systems](#page-34-0)

Example: Shared Buffer

Goal: p, q to communicate through shared buffer **b** controlled by trusted entity s

1 s creates $({r, w}$ to) new object **b**

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 00000000000000

[Take-Grant Systems](#page-35-0)

Example: Shared Buffer

Goal: p, q to communicate through shared buffer **b** controlled by trusted entity s

- 1 s creates $({r, w}$ to) new object **b**
- 2 s grants $({r, w}$ to **b**) to **p**

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 000000000000000

[Take-Grant Systems](#page-36-0)

Example: Shared Buffer

Goal: p, q to communicate through shared buffer **b** controlled by trusted entity s

- 1 s creates $({r, w}$ to) new object **b**
- 2 s grants $({r, w}$ to **b**) to **p**
- 3 s grants $({r, w}$ to **b**) to **q**

[SPM](#page-37-0)

000000000

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 000000000000000

Schematic Protection Model

Protection type: entity label determining how control rights affect the entity

Set at creation and cannot be changed

- \blacksquare Ticket: description of a single right over an entity
	- **Entity has sets of tickets (called a domain)**
	- **Ticket is** X/r **, where X is entity and r right**
- **Functions determine rights transfer**
	- Link: are source, target "connected"?
	- Filter: is transfer of ticket authorized?

Link Predicate

- **I** Idea: *link_i*(X , Y) if X can assert some control right over Y
- Conjunction of disjunction of:
	- \blacksquare X/z \in dom(X) \blacksquare X/z \in dom(Y) \blacksquare Y/z \in dom(X) \blacksquare Y/z \in dom(Y) r true

[SPM](#page-39-0)

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0)

Schematic Protection Model

\n- Take-Grant:
$$
link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/g \in dom(\mathbf{X}) \vee \mathbf{X}/t \in dom(\mathbf{Y})
$$
\n- Broadcasting: $link(\mathbf{X}, \mathbf{Y}) = \mathbf{X}/b \in dom(\mathbf{X})$
\n- Pull: $link(\mathbf{X}, \mathbf{Y}) = \mathbf{Y}/p \in dom(\mathbf{Y})$
\n

- Range is set of copyable tickets
	- \blacksquare Entity type, right
- Domain is subject pairs
- Gopy a ticket X/r : c from $dom(Y)$ to $dom(Z)$

$$
\blacksquare \mathbf{X}/\mathit{rc} \in \mathit{dom}(\mathbf{Y})
$$

$$
\blacksquare\,\, link_i(\mathbf{Y}, \mathbf{X})
$$

$$
\blacksquare \ \tau(\mathsf{Y})/r:c \in f_i(\tau(\mathsf{Y}), \ \tau(\mathsf{Z}))
$$

One filter function per link predicate

\n- $$
f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R
$$
\n- Any ticket can be transferred (if other conditions met)
\n- $f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$
\n- Only tickets with inert rights can be transferred (if other conditions met)
\n

$$
\blacksquare \, f_i(\tau(\mathbf{Y}), \, \tau(\mathbf{Z})) = \varnothing
$$

No tickets can be transferred

[SPM](#page-42-0)

000000000

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 00000000000000

Example: Take-Grant Model

 $TS = \{$ subjects $\}$, $TO = \{$ objects $\}$

■
$$
RC = \{ tc, gc \}, RI = \{ rc, wc, ... \}
$$

- link(p, q) = $p/t \in dom(q) \vee q/g \in dom(p)$
- **f** (subject, subject) = { subject, object } \times { tc, gc, rc, wc }

Create Operation

- **Must handle type, tickets of new entity**
- Relation $cc(a, b)$: subject of type a can create entity of type b $\overline{}$ \blacksquare cc for can create
- \blacksquare Rule of acyclic creates:

 \blacksquare cr(a, b): tickets created when subject of type a creates entity of type b

cr for create rule

B object:
$$
cr(a, b) \subseteq \{b/r : c \in Rl\}
$$

A gets B/r : c if and only if b/r : $c \in cr(a, b)$

Bsubject: $cr(a, b)$ has 2 subsets

 \blacksquare cr_P(a, b) added to **A**, cr_C(a, b) added to **B**

- A gets B/r : c if and only if b/r : $c \in cr_P(a, b)$
- **B** gets \mathbf{A}/r :*c* if and only if a/r :*c* \in *cr_C*(a, b)

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0)

[SPM](#page-45-0)

Non-Distinct Types

\n- $$
cr(a, a)
$$
: who gets what?
\n- $self/r: c$ are tickets for creator
\n- $a/r: c$ are tickets for created entity
\n- $cr(a, a) = \{ a/r: c, self/r: c \mid r: c \in R \}$
\n

[Protection Systems](#page-16-0)
00000000000000 00000000000000

Attenuating Create Rule

 $cr(a, b)$ is attenuating if: 1 $cr_C(a, b) \subseteq cr_P(a, b)$ and 2 $a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$

[SPM](#page-47-0)

000000000

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 000000000000000

Example: Owner-Based Policy

Users can create files, creator can give itself any inert rights over file

\n- $$
cc = \{(user, file)\}
$$
\n- $cr(user, file) = \{ file/r:c \mid r \in \mathbb{R} \}$
\n

■ Attenuating, as graph is acyclic, loop free

Example: Take-Grant

Say subjects create subjects (type s), objects (type o), but get only inert rights over latter

$$
\blacksquare cc = \{(s,s),(s,o)\}
$$

$$
= cr_C(a, b) = \varnothing
$$

$$
c_{P}(s,s) = \{s/tc, s/gc, s/rc, s/wc\}
$$

$$
r = cr_P(s, o) = \{o/rc, o/wc\}
$$

Not attenuating, as no self tickets provided; subject creates subject

$$
\overbrace{\text{subject}} \qquad \qquad \text{object}}
$$

- Goal: identify types of policies with tractable safety analyses
- **Approach:** derive a state in which additional entries, rights do not affect the analysis; then analyze this state
	- **Called a maximal state**

- System begins in initial state
- Authorized operation causes legal transition
- ■ Sequence of legal transitions moves system into final state
	- \blacksquare This sequence is a *history*
	- Final state is derivable from history, initial state $\overline{}$

[SPM](#page-51-0)

More Definitions

- States represented by h
- Set of subjects $\mathit{SUB^h},$ entities $\mathit{ENT^h}$
- Link relation in context of state h is linkh
- **Dom** relation in context of state h is dom^h

- \blacksquare X, Y connected by one link or a sequence of links **Formally, either of these hold:** For some i , $link_i^h(\mathsf{X},\mathsf{Y})$; or **There is a sequence of subjects** X_0, \ldots, X_n **such that** $\textit{link}^h_{i}(\mathbf{X}, \mathbf{X}_0)$, $\textit{link}^h_{i}(\mathbf{X}_n, \mathbf{Y})$, and for $k = 1, \ldots, n$, $link_i^h$ (X_{k-1}, X_k)
- If multiple such paths, refer to $\mathit{path}^h_j(\mathsf{X},\mathsf{Y})$

[SPM](#page-53-0)

000000000

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 000000000000000

Capacity $cap(path^h(\mathbf{X}, \mathbf{Y}))$

- Set of tickets that can flow over $path^h(\mathbf{X},\mathbf{Y})$
	- If $\mathit{link}_i^h(\mathsf{X},\mathsf{Y})$: set of tickets that can be copied over the link (i.e., $f_i(\tau(\mathbf{X}), \tau(\mathbf{Y})))$
	- Otherwise, set of tickets that can be copied over all links in the sequence of links making up the $\mathsf{path}^h(\mathsf{X},\mathsf{Y})$
- ■ Note: all tickets (except those for the final link) must be copyable

Flow Function

- I Idea: capture flow of tickets around a given state of the system
- Let there be m path^hs between subjects **X** and **Y** in state h. Then flow function

$$
flow^h: SUB^h \times SUB^h \rightarrow 2^{T \times R}
$$

is:

$$
\mathit{flow}^h(\mathbf{X}, \mathbf{Y}) = \bigcup_{i=1,\dots,m} \mathit{cap}(\mathit{path}^h_i(\mathbf{X}, \mathbf{Y}))
$$

[Outline](#page-1-0) [Security](#page-2-0) [Protection Systems](#page-16-0) 00000000000000

[SPM](#page-55-0)

Properties of Maximal State

- **Maximizes flow between all pairs of subjects**
	- State is called ^{*}
	- Ticket in $flow^*(\mathsf{X},\mathsf{Y})$ means there exists a sequence of operations that can copy the ticket from X to Y
- **Questions**
	- \blacksquare Is maximal state unique?
	- Does every system have one?

[SPM](#page-56-0)

000000000

Formal Definition of Maximal State

- Definition: $g \leq_0 h$ holds iff for all **X**, **Y** \in SUB⁰, $flow^g(X, Y) \subseteq flow^h(X, Y)$
	- Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h are equivalent states
	- Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state m is maximal iff $h \leq_0 m$ for every derivable state h
- \blacksquare Intuition: flow function contains all tickets that can be transferred from one subject to another
	- All maximal states in same equivalence class, answering first question (uniqueness of maximal state)

Lemma. Given an arbitrary finite set of states H , there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$

[SPM](#page-58-0)

000000000

Proof of Useful Lemma

By induction on the size of H BASIS: For $H = \emptyset$, $|H| = 0$, claim is trivially true INDUCTION HYPOTHESIS: For $|H| = n$, claim holds INDUCTION STEP: $|H'| = n + 1$, where $H' = G \cup \{h\}$. By hypothesis, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$ Let M be an interleaving of histories of g , h, which:

- **Preserves relative order of transitions in g, h**
- ■ Omits second create operation if duplicated

 M ends up in state m If $path^g(X,eY)$ for $X,Y \in SUB^g$, $path^m(X,Y)$, so $g \leq_0 m$ If $\mathsf{path}^h(\mathsf{X}, \mathsf{eY})$ for $\mathsf{X}, \mathsf{Y} \in \mathsf{SUB}^h$, $\mathsf{path}^m(\mathsf{X}, \mathsf{Y})$, so $h \leq_0 m$ Hence \vec{m} is a maximal state in H'

[SPM](#page-59-0)

Answer to "Does Every System Have a Maximal State"

Theorem: every system has a maximal state [∗]

Outline of proof: Let K be the set of derivable states containing exactly one state from each equivalence class of derivable states

- Let $X, Y \in SUB^0$.
- Flow function's range is $2^{T \times R}$, so it can take on at most $|2^{T\times R}|$ values.
- There are $|SUB^0|^2$ pairs of subjects in SUB^0
- So at most $|2^{T \times R}|$ $|SUB^0|^2$ distinct equivalence classes
- \blacksquare So K is finite

So the lemma's conditions hold, giving the answer "yes"