Decidability

January 21, 2014

Slide 1

ECS 235B, Foundations of Information and Computer Security

January 21, 2014

1 Safety in SPM

2 Expressive Power

3 Variant ACM Models

Formal Definition of Maximal State

- Definition: $g \leq_0 h$ holds iff for all **X**, **Y** \in *SUB*⁰, *flow*^g(**X**, **Y**) \subseteq *flow*^h(**X**, **Y**)
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h are equivalent states
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state m is maximal iff $h \leq_0 m$ for every derivable state h
- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class, answering first question (uniqueness of maximal state)

Useful Lemma

Lemma. Given an arbitrary finite set of states H, there exists a derivable state m such that for all $h \in H$, $h \leq_0 m$

Proof of Useful Lemma

By induction on the size of H

BASIS: For $H = \emptyset$, |H| = 0, claim is trivially true

INDUCTION HYPOTHESIS: For |H| = n, claim holds

INDUCTION STEP: |H'| = n + 1, where $H' = G \cup \{h\}$. By hypothesis, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$ Let M be an interleaving of histories of g, h, which:

- Preserves relative order of transitions in g, h
- Omits second create operation if duplicated

M ends up in state *m* If $path^{g}(\mathbf{X}, \mathbf{Y})$ for $\mathbf{X}, \mathbf{Y} \in SUB^{g}$, $path^{m}(\mathbf{X}, \mathbf{Y})$, so $g \leq_{0} m$ If $path^{h}(\mathbf{X}, \mathbf{Y})$ for $\mathbf{X}, \mathbf{Y} \in SUB^{h}$, $path^{m}(\mathbf{X}, \mathbf{Y})$, so $h \leq_{0} m$ Hence *m* is a maximal state in *H*'

Answer to "Does Every System Have a Maximal State"

Theorem: every system has a maximal state *

Outline of proof: Let K be the set of derivable states containing exactly one state from each equivalence class of derivable states

- Let $\mathbf{X}, \mathbf{Y} \in SUB^0$.
- Flow function's range is 2^{T×R}, so it can take on at most |2^{T×R}| values.
- There are $|SUB^0|^2$ pairs of subjects in SUB^0
- So at most $|2^{T \times R}| |SUB^0|^2$ distinct equivalence classes
- So *K* is finite

So the lemma's conditions hold, giving the answer "yes"

Safety Question

- In this model, is there a derivable state with X/r:c ∈ dom(A), or does there exist a subject B with ticket X/rc in the initial state in flow*(B, A)?
- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state h
- State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 - So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable

Fully Unfolded State

State *u* derived from state 0 as follows:

- Delete all loops in cc; new relation cc'
- Mark all subjects as folded
- While any $\mathbf{X} \in SUB^0$ is folded:
 - Mark it unfolded
 - If X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity Y ∈ SUB^g, mark it folded
- If any subject in state h can create an entity of its own type, do so

Now in state *u*

Termination

- |*SUB*⁰| is finite, so marking all subjects as folded terminates
- |SUB^h| is finite, so subjects in state h creating entities of their own type terminates
- Consider while loop:
 - Each subject in SUB⁰ can create at most |TS| children; |TS| is finite
 - Each folded subject in |*SUBⁱ*| can create at most |*TS*| − *i* children
 - When i = |TS|, subject cannot create more children
- Thus, folding is finite
- Each loop removes one element, so loop terminates

Surrogates

- Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them
- Definition: given initial state 0, for every derivable state h define a surrogate function σ : ENT^h → ENT^h by:

• if
$$\mathbf{X} \in ENT^{0}$$
, then $\sigma(\mathbf{X}) = \mathbf{X}$

- if **Y** creates **X** and $\tau(\mathbf{Y}) = \tau(\mathbf{X})$, then $\sigma(\mathbf{X}) = \sigma(\mathbf{Y})$
- if **Y** creates **X** and $\tau(\mathbf{Y}) \neq \tau(\mathbf{X})$, then $\sigma(\mathbf{X}) = \tau(\mathbf{Y})$ -surrogate of $\sigma(\mathbf{Y})$

Implications

- $\tau(\sigma(\mathbf{A})) = \tau(\mathbf{A})$
- If $\tau(\mathbf{X}) = \tau(\mathbf{Y})$, than $\sigma(\mathbf{X}) = \sigma(\mathbf{Y})$
- If $\tau(\mathbf{X}) \neq \tau(\mathbf{Y})$, then:
 - $\sigma(\mathbf{X})$ creates $\sigma(\mathbf{Y})$ in the construction of u
 - $\sigma(\mathbf{X})$ creates entities \mathbf{X}' of type $\tau(\mathbf{X}) = \tau(\sigma(\mathbf{X}))$
- From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that σ(X) creates σ(Y) are in dom^u(σ(X)) and dom^u(σ(Y))

Deriving Maximal State

- Reorder operations so that all creates come first and replace history with equivalent one using surrogates
- Show maximal state of new history is also that of original history
- Show maximal state can be derived from initial state

Reordering

- *H* legal history that derives state *h* from state 0
- Order operations: first create, then demand, then copy operations
- Build new history G from H as follows:
 - Delete all creates
 - "X demands Y/r:c" becomes "σ(X) demands σ(Y)/r:c"
 - '**Y** copies $\mathbf{X}/r:c$ from **Y**" becomes " $\sigma(\mathbf{Y})$ copies $\sigma(\mathbf{X})/r:c$ from $\sigma(\mathbf{Y})$ "

Tickets in Parallel

Theorem:

- **1** All transitions in *G* legal
- 2 If $X/r:c \in dom^{h}(Y)$, then $\sigma(X)/r:c \in dom^{g}(\sigma(Y))$

Outline of proof: induct on number of copy operations in H

Induction Basis: No Copy Operations

- H has create, demand only; so G has demand only. σ
 preserves type, so by construction every demand operation in G is legal
- 3 ways for $\mathbf{X}/r:c$ to be in $dom^h(\mathbf{Y})$:
 - $X/r:c \in dom^{0}(Y)$ means $X, Y \in ENT^{0}$, so trivially $\sigma(X)/r:c \in dom^{g}(\sigma(Y))$ holds
 - A create added $\mathbf{X}/r:c \in dom^h(\mathbf{Y})$: previous lemma says $\sigma(\mathbf{X})/r:c \in dom^g(\sigma(\mathbf{Y}))$ holds
 - A demand added X/r:c ∈ dom^h(Y): corresponding demand operation in G gives σ(X)/r:c ∈ dom^g(σ(Y))

Induction Hypothesis

- Claim holds for all histories with k copy operations
- History H has k + 1 copy operations
 - H' initial sequence of H composed of k copy operations
 - h' state derived from H'

Induction Step $(\sigma(\mathbf{X}))$

- Let G' be a sequence of modified operations corresponding to H'; g' the derived state
 - G' legal history by hypothesis
- Final operation is "Z copied X/r:c from Y"
 - Construction of G means final operation is " $\sigma(\mathbf{Z})$ copies $\sigma(\mathbf{X})/r:c$ from $\sigma(\mathbf{Y})$
 - So h, h' differ by at most $X/r: c \in dom^h(Z)$
 - Result is G has $\sigma(\mathbf{X})/r:c \in dom^h(\sigma(\mathbf{Z}))$
- Proves second part of claim

Induction Step (Legal Transitions)

$$\sigma(\mathbf{X})/r: c \in \mathit{dom}^{g'}(\sigma(\mathbf{Y})) ext{ and } \mathit{link}^{g'}(\sigma(\mathbf{Y}), \sigma(\mathbf{Z}))$$

• As σ preserves type, IH and 3 imply

$$\tau(\sigma(\mathbf{X})/r:c) \in f_i(\tau(\sigma(\mathbf{Y})), \tau(\sigma(\mathbf{Z})))$$

• By IH, G' is legal, so G is legal

Outline	Safety in SPM	Expressive Power	Variant ACM Models

Corollary

If $link_i^h(\mathbf{X}, \mathbf{Y})$, then $link_i^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$

Main Theorem

- System has acyclic attenuating scheme
- For every history H deriving state h from initial state, there is a history G without create operations that derives g from the fully unfolded state u such that

$$(\forall \mathbf{X}, \mathbf{Y} \in SUB^h)[\mathit{flow}^h(\mathbf{X}, \mathbf{Y}) \subseteq \mathit{flow}^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))]$$

 Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state Enough to show that every path^h(X, Y) has corresponding path^g(σ(X), σ(Y)) such that

$$cap(path^{h}(\mathbf{X}, \mathbf{Y})) = cap(path^{g}(\sigma(\mathbf{X}), \sigma(\mathbf{Y})))$$

- Then corresponding sets of tickets flow through systems derived from *H* and *G*
- As initial states correspond, so do those systems
- Prove by induction on the number of links

Induction Basis and Hypothesis

BASIS: Length of *path^h*(**X**, **Y**) = 1
 By definition of *path^h*, *link^h_i*(**X**, **Y**), so *link^g_i*(σ(**X**), σ(**Y**)); as σ preserves type, this means

$$\mathsf{cap}(\mathsf{path}^h(\mathsf{X},\mathsf{Y})) = \mathsf{cap}(\mathsf{path}^\mathsf{g}(\sigma(\mathsf{X}),\sigma(\mathsf{Y})))$$

HYPOTHESIS: Now assume this is true when path^h(X,Y) has length k

Induction Step

Let $path^{h}(\mathbf{X}, \mathbf{Y})$ have length k + 1

- Then there is a Z such that path^h(X, Z) has length k and link^h_i(Z, Y)
- By IH, there is a path^g(σ(X), σ(Z)) with same capacity as path^h(X, Z)
- By corollary, $link_i^g(\sigma(\mathbf{Z}), \sigma(\mathbf{Y}))$
- As σ preserves type, there is $path^{g}(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$ with

$$cap(path^{h}(\mathbf{X}, \mathbf{Y})) = cap(path^{g}(\sigma(\mathbf{X}), \sigma(\mathbf{Y})))$$

Safety Result

 If the scheme is acyclic and attenuating, the safety question is decidable

Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

SPM more abstract

- Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SPM has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SPM cannot express multiparent creates easily, and not at all if the parents are of different types because *cc* (can create) allows for only one type of creator

Multiparent Create

```
Solves mutual suspicion problem
      Create proxy jointly, each gives it needed rights
  In HRU:
command multicreate (x, y, o)
   if r in A[x, y] and r in A[y, x]
   then
      create object o;
      enter r into A[x, o];
      enter r into A[y, o];
```

end

SPM and Multiparent Create

Example

- Anna, Bill must do something cooperatively
 - But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In *E*SPM:
 - Anna, Bill are of type *a*; proxy is of type *p*; right $x \in R$

$$cc(a,a)=p$$

- $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
- $cr_{\text{proxy}}(a, a, p) = \{\text{Anna}/x, \text{Bill}/x\}$

Does 2-Parent Joint Create Suffice?

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P₁, P₂, P₃; child C):

■
$$cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c \subseteq T$$

■ $cr_{\mathbf{P},\mathbf{P}_1}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c/R_{1,1} \cup \tau(\mathbf{P}_1)/R_{2,1}$
■ $cr_{\mathbf{P},\mathbf{P}_2}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c/R_{1,1} \cup \tau(\mathbf{P}_2)/R_{2,2}$
■ $cr_{\mathbf{P},\mathbf{P}_1}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c/R_{1,1} \cup \tau(\mathbf{P}_3)/R_{2,3}$
■ $cr_{\mathbf{C}}(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = c/R_{3} \cup \tau(\mathbf{P}_1)/R_{4,1} \cup \tau(\mathbf{P}_2)/R_{4,2} \cup \tau(\mathbf{P}_3)/R_{4,3}$

General Approach

Define agents for parents and child

- Agents act as surrogates for parents
- If create fails, parents have no extra rights
- If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3 of types p_1 , p_2 , p_3
- Child C of type c
- Parent agents A₁, A₂, A₃ have types a₁, a₂, a₃
- Child agent S of type s
- Type t is parentage
 - if $\mathbf{X}/t \in dom(\mathbf{Y})$, **X** is **Y**'s parent
- Types t, a_1 , a_2 , a_3 , s are new types

Can Create

Add the following to the *cc* relation:

$$cc(p_1) = a_1$$

$$cc(p_2,a_1)=a_2$$

$$cc(p_3,a_2)=a_3$$

Parents creating their agents; note agents have maximum of 2 parents

•
$$cc(a_3) = s$$

Agent of all parents creates agent of child

Agent of child creates child

Create Rules

Add the following to the create rule:

•
$$cr_{\mathrm{P}}(p_1, a_1) = \emptyset$$

•
$$cr_{\rm C}(p_1, a_1) = p_1/Rtc$$

 Agent's parent set to creating parent; agent has all rights over parent

$$cr_{\mathbf{P}_1}(p_2,a_1,a_2) = \emptyset$$

$$cr_{\mathbf{P}_2}(p_2,a_1,a_2) = \emptyset$$

•
$$cr_{C}(p_{2}, a_{1}, a_{2}) = p_{2}/Rtc \cup a_{1}/tc$$

 Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Create Rules (con't)

Also add the following to the create rule:

•
$$cr_{P_1}(p_3, a_2, a_3) = \emptyset$$

• $cr_{P_2}(p_3, a_2, a_3) = \emptyset$
• $cr_{C}(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$

 Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

•
$$cr_{\mathrm{P}}(a_3,s) = \emptyset$$

•
$$cr_{
m C}(a_3,s)=a_3/tc$$

• Child's agent has third agent as parent $cr_{\mathrm{P}}(a_3,s) = \emptyset$

•
$$cr_{P}(s,c) = C/Rtc$$

• $cr_{C}(s,c) = c/R_{3}t$

 Child's agent gets full rights over child; child gets R₃ rights over agent

Link Predicates

- Idea: no tickets to parents until child created
- Done by requiring each agent to have its own parent rights

$$\blacksquare link_1(\mathbf{A}_1, \mathbf{A}_2) = \mathbf{A}_1/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$$

$$\blacksquare link_1(\mathsf{A}_2,\mathsf{A}_3) = \mathsf{A}_2/t \in dom(\mathsf{A}_3) \land \mathsf{A}_3/t \in dom(\mathsf{A}_3)$$

In $k_2(\mathbf{S}, \mathbf{A}_3) = \mathbf{A}_3/t \in dom(\mathbf{S}) \land \mathbf{C}/t \in dom(\mathbf{C})$

Ink₃
$$(A_1, C) = C/t \in dom(A_1)$$

In
$$k_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$$

In
$$k_3(A_3, C) = C/t \in dom(A_3)$$

$$\blacksquare link_4(\mathsf{A}_1,\mathsf{P}_1) = \mathsf{P}_1/t \in \mathit{dom}(\mathsf{A}_1) \land \mathsf{A}_1/t \in \mathit{dom}(\mathsf{A}_1)$$

$$\blacksquare link_4(\mathbf{A}_2,\mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \land \mathbf{A}_2/t \in dom(\mathbf{A}_2)$$

$$\blacksquare link_4(\mathbf{A}_3, \mathbf{P}_3) = \mathbf{P}_3/t \in dom(\mathbf{A}_3) \land \mathbf{A}_3/t \in dom(\mathbf{A}_3)$$

Filter Functions

•
$$f_1(a_2, a_1) = a_1/t \cup c/Rtc$$

- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s,a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4,2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$

•
$$f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$$

Construction

Create A_1 , A_2 , A_3 , S, C; then

- **P**₁ has no relevant tickets
- P₂ has no relevant tickets
- P₃ has no relevant tickets
- A₁ has P₁/Rtc
- **A**₂ has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc$
- **A**₃ has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/tc$
- \blacksquare S has $\textbf{A}_3/\textit{tc} \cup \textbf{C}/\textit{Rtc}$
- **C** has **C**/*R*₃

Construction (con't)

Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2 **A**₃ has $\mathbf{P}_3/Rtc \cup \mathbf{A}_2/t \cup \mathbf{A}_3/t \cup \mathbf{C}/Rtc$ Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1 **A**₂ has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc \cup \mathbf{A}_2/t \cup \mathbf{C}/Rtc$ Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1 **A**₁ has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/t \cup \mathbf{A}_1/t \cup \mathbf{C}/Rtc$

Now all *link*₃s true \Rightarrow apply *f*₃

• C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

- Now $link_4$ true \Rightarrow apply f_4
 - **P**₁ has $\mathbf{C}/R_{1,1} \cup \mathbf{P}_1/R_{2,1}$
 - **P**₂ has $\mathbf{C}/R_{1,2} \cup \mathbf{P}_2/R_{2,2}$
 - **P**₃ has $C/R_{1,3} \cup P_3/R_{2,3}$
- 3-parent joint create gives same rights to P₁, P₂, P₃, C
- If create of **C** fails, *link*₂ does not hold, so construction fails

Theorem

The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions

Proof: By construction, as above.

More Theorems

- The monotonic ESPM model and the monotonic HRU model are equivalent
- The safety question in ESPM also decidable for acyclic attenuating schemes
 - Proof is similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph: vertex represents entity, edge represents right; static types
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Create

Simulate with 2-parent joint create

- Nodes **P**₁, **P**₂, **P**₃ parents
- Create node **C** with type *c* with edges of type *e*
- Add node A_1 of type *a* and edge from P_1 to A_1 of type *e'*

Next Step

- **A**₁, **P**₂ create A_2 ; A_2 , **P**₃ create A_3
- Type of nodes, edges are *a* and *e'*

Next Step

- **A**₃ creates **S**, of type *a*
- **S** creates **C**, of type *c*

Last Step

Edge adding operations

•
$$\mathbf{P}_1 \rightarrow \mathbf{A}_1 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$$
: \mathbf{P}_1 to \mathbf{C} edge type e

•
$$\mathbf{P}_2 \rightarrow \mathbf{A}_2 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$$
: \mathbf{P}_2 to \mathbf{C} edge type e

•
$$\mathbf{P}_3 \rightarrow \mathbf{A}_3 \rightarrow \mathbf{S} \rightarrow \mathbf{C}$$
: \mathbf{P}_2 to \mathbf{C} edge type e

Definitions

- Scheme: graph representation as above
- Model: set of schemes
- Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted

Example

- Above 2-parent joint creation simulation in scheme TWO
- Equivalent to 3-parent joint creation scheme *THREE* in which
 P₁, P₂, P₃, C are of same type as in *TWO*, and edges from
 P₁, P₂, P₃ to C are of type *e*, and no types *a* and *e'* exist in *TWO*

Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and
- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE

Expressive Power

- If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
- If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
- If MA as expressive as MB and vice versa, MA and MB equivalent

Example

Scheme A in model M

- Nodes X₁, X₂, X₃
- 2-parent joint create
- 1 node type, 1 edge type
- No edge adding operations
- Initial state: X₁, X₂, X₃, no edges
- Scheme *B* in model *N*
 - All same as A except no 2-parent joint create
 - Has 1-parent create
- Which is more expressive?

Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N

Can B Simulate A?

- Suppose X₁, X₂ jointly create Y in A
 - Edges from X₁, X₂ to Y, no edge from X₃ to Y
- Can B simulate this?
 - Without loss of generality, X₁ creates Y
 - Must have edge adding operation to add edge from X₂ to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes

B Cannot Simulate A

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X₂ to C can add one from X₃ to C
 - A cannot enter this state
 - A cannot have node (C) with 3 incoming edges
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So B cannot simulate A; therefore N less expressive than M

Theorem

Monotonic single-parent models are less expressive than monotonic multiparent models

Proof: By contradiction

- Scheme *A* is in multiparent model
- Scheme *B* is in single parent model
- Claim: B can simulate A, without assumption that they start in the same initial state
 - Note: example assumed same initial state

Outline of Proof

■ X₁, X₂ nodes in A

- They create **Y**₁, **Y**₂, **Y**₃ using multiparent create rule
- **Y**₁, **Y**₂ create **Z** using multiparent create rule
- Note: no edge from Y₃ to Z can be added, as A has no edge-adding operation

Outline of Proof (con't)

• W, X_1 , X_2 nodes in B

- W creates Y₁, Y₂, Y₃ using single parent create rule, and adds edges for X₁, X₂ to all using edge adding rule
- Y₁ creates Z using single parent create rule; now must add edge from X₂ to Z to simulate A
- Use same edge adding rule to add edge from **Y**₃ to **Z**: cannot duplicate this in scheme *A*!

Meaning

- Scheme B cannot simulate scheme A, contradicting hypothesis
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent

Typed Access Control Matrix Model (TAM)

- Like ACM, but with set of types T
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ , A)
 - $\tau: O \rightarrow T$ specifies type of each object
 - If X subject, $\tau(X) \in TS$
 - If **X** object, $\tau(\mathbf{X}) \in T TS$

Create Rules

Subject creation

create subject *s* **of type** *ts*

- s must not exist as subject or object when operation executed
- $ts \in TS$
- Object creation
 - create object o of type to
 - o must not exist as subject or object when operation executed
 - $to \in T TS$

create subject

- Precondition: $s \notin S$
- Primitive command: create subject s of type t
- Postconditions:

■
$$S' = S \cup \{s\}, O' = O \cup \{s\}$$

■ $(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t$
■ $(\forall y \in O')[A'[s, y] = \varnothing], (\forall x \in S')[A'[x, s] = \varnothing]$
■ $(\forall x \in S)(\forall y \in O)[A'[x, y] = A[x, y]]$

create object

- Precondition: $o \notin O$
- Primitive command: create object o of type t
- Postconditions:

■
$$S' = S, O' = O \cup \{o\}$$

■ $(\forall y \in O)[\tau'(y) = \tau(y)], \tau'(o) = t$
■ $(\forall x \in S')[A'[x, o] = \varnothing]$
■ $(\forall x \in S)(\forall y \in O)[A'[x, y] = A[x, y]]$

Monotonic Typed Access Control Matrix Model (MTAM)

TAM without **delete**, **destroy**

- $\alpha(x_1:t_1,\ldots,x_n:t_n)$ create command
 - t_i is a child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in α
 - Otherwise t_i is a parent type

Cyclic Creates

```
command havoc(s:u, p:u, f:v, q:w)
   create subject p of type u;
   create object f of type v;
   enter own into A[s,p];
   enter r into A[q,p];
   enter own into A[p,f];
   enter r into A[p,f];
end
```

Creation Graph

- u, v child types
- u, w parent type
- Graph: lines from parent types to child types
- This one has cycles

Acyclic Creates

```
command ahavoc(s:u, p:u, f:v, q:w)
    create object f of type v;
    enter own into A[s,p];
    enter r into A[q,p];
    enter own into A[p,f];
    enter r into A[p,f];
enter r into A[p,f];
```

Creation Graph

- v child type
- u, w parent type
- Graph: lines from parent types to child types
- This one has no cycles

Theorem

- Safety decidable for systems with acyclic MTAM schemes
 In fact, it is NP hard
- Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 - "Ternary" means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM