
January 23, 2014	

•  Policy: says what is, and is not, allowed	

•  Key point is expression	

– How do you state it in a precise, understandable
way?	

– What do you want it to say?	

January 23, 2014	
 ECS 235B Winter Quarter 2014	
 Slide #1	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Security Policy	

•  Policy partitions system states into:	

– Authorized (secure)	

•  These are states the system can enter	

– Unauthorized (nonsecure)	

•  If the system enters any of these states, it’s a
security violation	

•  Secure system	

– Starts in authorized state	

– Never enters unauthorized state	

Slide #2	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Confidentiality	

•  X set of entities, I information	

•  I satisfies confidentiality property with respect to X

if no x ∈ X can obtain information from I	

•  I can be disclosed to others	

•  Example:	

–  X set of students	

–  I final exam answer key	

–  I is confidential with respect to X if students cannot

obtain final exam answer key	

Slide #3	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Integrity	

•  X set of entities, I information	

•  I satisfies integrity property with respect to X if all

x ∈ X trust information in I	

•  Types of integrity:	

–  trust I, its conveyance and protection (data integrity)	

–  I information about origin of something or an identity

(origin integrity, authentication)	

–  I resource: means resource functions as it should

(assurance)	

Slide #4	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Availability	

•  X set of entities, I resource	

•  I satisfies availability property with respect to X if

all x ∈ X can access I	

•  Types of availability:	

–  traditional: x gets access or not	

–  quality of service: promised a level of access (for

example, a specific level of bandwidth) and not meet it,
even though some access is achieved	

Slide #5	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Policy Models	

•  Abstract description of a policy or class of
policies	

•  Focus on points of interest in policies	

– Security levels in multilevel security models	

– Separation of duty in Clark-Wilson model	

– Conflict of interest in Chinese Wall model	

Slide #6	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Types of Security Policies	

•  Military (governmental) security policy	

– Policy primarily protecting confidentiality	

•  Commercial security policy	

– Policy primarily protecting integrity	

•  Confidentiality policy	

– Policy protecting only confidentiality	

•  Integrity policy	

– Policy protecting only integrity	

Slide #7	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Integrity and Transactions	

•  Begin in consistent state	

–  “Consistent” defined by specification	

•  Perform series of actions (transaction)	

– Actions cannot be interrupted	

–  If actions complete, system in consistent state	

–  If actions do not complete, system reverts to

beginning (consistent) state	

Slide #8	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Trust	

Administrator installs patch	

1.  Trusts patch came from vendor, not

tampered with in transit	

2.  Trusts vendor tested patch thoroughly	

3.  Trusts vendor’s test environment

corresponds to local environment	

4.  Trusts patch is installed correctly	

Slide #9	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Trust in Formal Verification	

•  Gives formal mathematical proof that given
input i, program P produces output o as
specified	

•  Suppose a security-related program S
formally verified to work with operating
system O	

•  What are the assumptions?	

Slide #10	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Trust in Formal Methods	

1.  Proof has no errors	

•  Bugs in automated theorem provers	

2.  Preconditions hold in environment in which S is

to be used	

3. S transformed into executable Sʹ′ whose actions

follow source code	

–  Compiler bugs, linker/loader/library problems	

4.  Hardware executes Sʹ′ as intended	

–  Hardware bugs (Pentium f00f bug, for example)	

Slide #11	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Question	

•  Policy disallows cheating	

–  Includes copying homework, with or without

permission	

•  CS class has students do homework on computer	

•  Anne forgets to read-protect her homework file	

•  Bill copies it	

•  Who cheated?	

–  Anne, Bill, or both?	

Slide #12	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Answer Part 1	

•  Bill cheated	

–  Policy forbids copying homework assignment	

–  Bill did it	

–  System entered unauthorized state (Bill having a copy

of Anne’s assignment)	

•  If not explicit in computer security policy,

certainly implicit	

–  Not credible that a unit of the university allows

something that the university as a whole forbids, unless
the unit explicitly says so	

Slide #13	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Answer Part 2	

•  Anne didn’t protect her homework	

– Not required by security policy	

•  She didn’t breach security	

•  If policy said students had to read-protect

homework files, then Anne did breach
security	

– She didn’t do this	

Slide #14	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Mechanisms	

•  Entity or procedure that enforces some part
of the security policy	

– Access controls (like bits to prevent someone

from reading a homework file)	

– Disallowing people from bringing CDs and

floppy disks into a computer facility to control
what is placed on systems	

Slide #15	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Types of Access Control	

•  Discretionary Access Control (DAC, IBAC)	

–  individual user sets access control mechanism to allow

or deny access to an object	

•  Mandatory Access Control (MAC)	

–  system mechanism controls access to object, and
individual cannot alter that access	

•  Originator Controlled Access Control (ORCON)	

–  originator (creator) of information controls who can

access information	

Slide #16	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Policy Languages	

•  Express security policies in a precise way	

•  High-level languages	

– Policy constraints expressed abstractly	

•  Low-level languages	

– Policy constraints expressed in terms of
program options, input, or specific
characteristics of entities on system	

Slide #17	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

High-Level Policy Languages	

•  Constraints expressed independent of
enforcement mechanism	

•  Constraints restrict entities, actions	

•  Constraints expressed unambiguously	

– Requires a precise language, usually a
mathematical, logical, or programming-like
language	

Slide #18	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Example: Web Browser	

•  Goal: restrict actions of Java programs that
are downloaded and executed under control
of web browser	

•  Language specific to Java programs	

•  Expresses constraints as conditions

restricting invocation of entities	

Slide #19	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Expressing Constraints	

•  Entities are classes, methods	

–  Class: set of objects that an access constraint constrains	

–  Method: set of ways an operation can be invoked	

•  Operations	

–  Instantiation: s creates instance of class c: s –| c	

–  Invocation: s1 executes object s2: s1 |→ s2	

•  Access constraints	

–  deny(s op x) when b	

–  While b is true, subject s cannot perform op on (subject

or class) x; empty s means all subjects	

Slide #20	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Sample Constraints	

•  Downloaded program cannot access password
database file on UNIX system	

•  Program’s class and methods for files:	

class File {!
!public file(String name);!
!public String getfilename();!
!public char read();!

•  Constraint:	

deny(|-> file.read) when!
!!(file.getfilename() == “/etc/passwd”)!

Slide #21	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Another Sample Constraint	

•  At most 100 network connections open	

•  Socket class defines network interface	

– Network.numconns method giving number of
active network connections	

•  Constraint	

deny(-| Socket) when!
!! !(Network.numconns >= 100)!

Slide #22	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Low-Level Policy Languages	

•  Set of inputs or arguments to commands	

– Check or set constraints on system	

•  Low level of abstraction	

– Need details of system, commands	

Slide #23	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Example: tripwire	

•  File scanner that reports changes to file
system and file attributes	

–  tw.config describes what may change	

!/usr/mab/tripwire +gimnpsu012345678-a!

•  Check everything but time of last access (“-a”)	

– Database holds previous values of attributes	

Slide #24	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Example Database Record	

!/usr/mab/tripwire/README 0/. 100600 45763
1 917 10 33242 .gtPvf .gtPvY .gtPvY
0 .ZD4cc0Wr8i21ZKaI..LUOr3 .
0fwo5:hf4e4.8TAqd0V4ubv ?...... ...9b3
1M4GX01xbGIX0oVuGo1h15z3 ?:Y9jfa04rdzM1q:eqt1AP
gHk ?.Eb9yo.2zkEh1XKovX1:d0wF0kfAvC ?
1M4GX01xbGIX2947jdyrior38h15z3 0!

•  file name, version, bitmask for attributes, mode,
inode number, number of links, UID, GID, size,
times of creation, last modification, last access,
cryptographic checksums!

Slide #25	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Comments	

•  System administrators not expected to edit
database to set attributes properly	

•  Checking for changes with tripwire is easy	

–  Just run once to create the database, run again to check	

•  Checking for conformance to policy is harder	

–  Need to either edit database file, or (better) set system

up to conform to policy, then run tripwire to construct
database	

Slide #26	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Example English Policy	

•  Computer security policy for academic
institution	

–  Institution has multiple campuses, administered

from central office	

– Each campus has its own administration, and

unique aspects and needs	

•  Authorized Use Policy	

•  Electronic Mail Policy	

Slide #27	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Authorized Use Policy	

•  Intended for one campus (Davis) only	

•  Goals of campus computing	

–  Underlying intent	

•  Procedural enforcement mechanisms	

–  Warnings	

–  Denial of computer access	

–  Disciplinary action up to and including expulsion	

•  Written informally, aimed at user community	

Slide #28	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Electronic Mail Policy	

•  Systemwide, not just one campus	

•  Three parts	

– Summary	

– Full policy	

–  Interpretation at the campus	

Slide #29	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Summary	

•  Warns that electronic mail not private	

– Can be read during normal system

administration	

– Can be forged, altered, and forwarded	

•  Unusual because the policy alerts users to
the threats	

– Usually, policies say how to prevent problems,

but do not define the threats	

Slide #30	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Summary	

•  What users should and should not do	

–  Think before you send	

–  Be courteous, respectful of others	

–  Don’t interfere with others’ use of email	

•  Personal use okay, provided overhead minimal	

•  Who it applies to	

–  Problem is UC is quasi-governmental, so is bound by rules that
private companies may not be	

–  Educational mission also affects application	

Slide #31	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Full Policy	

•  Context	

–  Does not apply to Dept. of Energy labs run by the university	

–  Does not apply to printed copies of email	

•  Other policies apply here	

•  E-mail, infrastructure are university property	

–  Principles of academic freedom, freedom of speech apply	

–  Access without user’s permission requires approval of vice

chancellor of campus or vice president of UC	

–  If infeasible, must get permission retroactively	

Slide #32	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Uses of E-mail	

•  Anonymity allowed	

– Exception: if it violates laws or other policies	

•  Can’t interfere with others’ use of e-mail	

– No spam, letter bombs, e-mailed worms, etc.	

•  Personal e-mail allowed within limits	

– Cannot interfere with university business	

– Such e-mail may be a “university record”

subject to disclosure	

Slide #33	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Security of E-mail	

•  University can read e-mail	

– Won’t go out of its way to do so	

– Allowed for legitimate business purposes	

– Allowed to keep e-mail robust, reliable	

•  Archiving and retention allowed	

– May be able to recover e-mail from end system

(backed up, for example)	

Slide #34	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Implementation	

•  Adds campus-specific requirements and

procedures	

–  Example: “incidental personal use” not allowed if it

benefits a non-university organization	

–  Allows implementation to take into account differences

between campuses, such as self-governance by
Academic Senate	

•  Procedures for inspecting, monitoring, disclosing
e-mail contents	

•  Backups	

Slide #35	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Types of Mechanisms	

secure	
 precise	
 broad	

set of reachable states	
 set of secure states	

Slide #36	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Secure, Precise Mechanisms	

•  Can one devise a procedure for developing a
mechanism that is both secure and precise?	

–  Consider confidentiality policies only here	

–  Integrity policies produce same result	

•  Program a function with multiple inputs and one
output	

–  Let p be a function p: I1 × ... × In → R. Then p is a

program with n inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output
r ∈ R	

Slide #37	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Programs and Postulates	

•  Observability Postulate: the output of a function

encodes all available information about its inputs	

–  Covert channels considered part of the output	

•  Example: authentication function	

–  Inputs name, password; output Good or Bad	

–  If name invalid, immediately print Bad; else access

database	

–  Problem: time output of Bad, can determine if name

valid	

–  This means timing is part of output	

Slide #38	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Protection Mechanism	

•  Let p be function p: I1 × ... × In → R. Protection
mechanism m is a function m: I1 × ... × In → R ∪ E
for which, when ik ∈ Ik, 1 ≤ k ≤ n, either	

–  m(i1, ..., in) = p(i1, ..., in) or	

–  m(i1, ..., in) ∈ E.	

•  E is set of error outputs	

–  In above example, E = { “Password Database Missing”,

“Password Database Locked” }	

Slide #39	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Confidentiality Policy	

•  Confidentiality policy for program p says which

inputs can be revealed	

–  Formally, for p: I1 × ... × In → R, it is a function	

	
 	
 	
c: I1 × ... × In → A, where A ⊆ I1 × ... × In	

–  A is set of inputs available to observer	

•  Security mechanism is function	

	
 	
 	
m: I1 × ... × In → R ∪ E	

–  m secure iff ∃ m´: A → R ∪ E such that,	

	
 	
for all ik ∈ Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(c(i1, ..., in))	

–  m returns values consistent with c	

Slide #40	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Examples	

•  c(i1, ..., in) = C, a constant	

– Deny observer any information (output does

not vary with inputs)	

•  c(i1, ..., in) = (i1, ..., in), and m´ = m	

– Allow observer full access to information	

•  c(i1, ..., in) = i1	

– Allow observer information about first input
but no information about other inputs.	

Slide #41	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Precision	

•  Security policy may be over-restrictive	

–  Precision measures how over-restrictive	

•  m1, m2 distinct protection mechanisms for program
p under policy c	

–  m1 as precise as m2 (m1 ≈ m2) if, for all inputs i1, …, in,	

	
m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)	

–  m1 more precise than m2 (m1 ~ m2) if there is an input	

	
(i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, in´) and	

	
m2(i1´, …, in´) ≠ p(i1´, …, in´).	

Slide #42	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Combining Mechanisms	

•  m1, m2 protection mechanisms	

•  m3 = m1 ∪ m2	

–  For inputs on which m1 and m2 return same value as p,
m3 does also; otherwise, m3 returns same value as m1	

•  Theorem: if m1, m2 secure, then m3 secure	

–  Also, m3 ≈ m1 and m3 ≈ m2	

–  Follows from definitions of secure, precise, and m3 	

Slide #43	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Existence Theorem	

•  For any program p and security policy c,
there exists a precise, secure mechanism m*
such that, for all secure mechanisms m
associated with p and c, m* ≈ m	

– Maximally precise mechanism	

– Ensures security	

– Minimizes number of denials of legitimate

actions	

Slide #44	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Lack of Effective Procedure	

•  There is no effective procedure that
determines a maximally precise, secure
mechanism for any policy and program.	

– Sketch of proof: let c be constant function, and

p compute function T(x). Assume T(x) = 0.
Consider program q, where	

p;!
if z = 0 then y := 1 else y := 2;!
halt;!

	

Slide #45	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Rest of Sketch	

•  m associated with q, y value of m, z output of p

corresponding to T(x)	

•  ∀x[T(x) = 0] → m(x) = 1	

•  ∃x´ [T(x´) ≠ 0] → m(x) = 2 or m(x)↑	

•  If you can determine m, you can determine

whether T(x) = 0 for all x	

•  Determines some information about input (is it 0?)	

•  Contradicts constancy of c.	

•  Therefore no such procedure exists	

Slide #46	

January 23, 2014	
 ECS 235B Winter Quarter 2014	

Confidentiality Policies	

•  Bell-LaPadula	

–  Informally	

– Formally	

– Example Instantiation	

•  Tranquility	

•  Controversy	

– System Z	

Slide #47	

