January 28, 2014

- Bell-LaPadula
 - Informally
 - Formally
 - Example Instantiation

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist of security clearance L(s)
 Objects have security classification L(o)

Example

security level	subject	object
Top Secret	Tamara	Personnel Files
Secret	Samuel	E-Mail Files
Confidential	Claire	Activity Logs
Unclassified	Ulaley	Telephone Lists

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

January 28, 2014

ECS 235B Winter Quarter 2014

Reading Information

- Information flows *up*, not *down*
 - "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
 - Subject *s* can read object *o* iff, $L(o) \le L(s)$ and *s* has permission to read *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 - "Writes up" allowed, "writes down" disallowed
- *-Property (Step 1)
 - Subject *s* can write object *o* iff $L(s) \le L(o)$ and *s* has permission to write *o*
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance*, *category set*)
- Examples
 - (Top Secret, { NUC, EUR, ASI })
 - (Confidential, {EUR, ASI})
 - (Secret, { NUC, ASI })

Levels and Lattices

- (A, C) dom (A', C') iff $A' \leq A$ and $C' \subseteq C$
- Examples
 - (Top Secret, {NUC, ASI}) *dom* (Secret, {NUC})
 - (Secret, {NUC, EUR}) *dom* (Confidential,{NUC, EUR})
 - (Top Secret, {NUC}) ¬*dom* (Confidential, {EUR})
- Let C be set of classifications, K set of categories. Set of security levels L = C × K, dom form lattice
 - lub(L) = (max(A), C)
 - glb(L) = (min(A), Ø)

Levels and Ordering

- Security levels partially ordered
 - Any pair of security levels may (or may not) be related by *dom*
- "dominates" serves the role of "greater than" in step 1
 - "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down* "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
 - Subject s can read object o iff L(s) dom L(o) and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
 "Writes up" allowed, "writes down" disallowed
- *-Property (Step 2)
 - Subject s can write object o iff L(o) dom L(s) and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
 - Proof: induct on the number of transitions
 - In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
 - Major can talk to colonel ("write up" or "read down")
 - Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects
 maxlevel(s) dom curlevel(s)
- Example
 - Treat Major as an object (Colonel is writing to him/her)
 - Colonel has maxlevel (Secret, { NUC, EUR })
 - Colonel sets *curlevel* to (Secret, { EUR })
 - Now L(Major) dom curlevel(Colonel)
 - Colonel can write to Major without violating "no writes down"
 - Does L(s) mean curlevel(s) or maxlevel(s)?
 - Formally, we need a more precise notation

Formal Model

- Allows us to reason precisely about the model
- Provides a formalism to validate systems against

Formal Model Definitions

- S subjects, O objects, P rights
 - Defined rights: \underline{r} read, \underline{a} write, \underline{w} read/write, \underline{e} empty
- *M* set of possible access control matrices
- *C* set of clearances/classifications, *K* set of categories, $L = C \times K$ set of security levels

•
$$F = \{ (f_s, f_o, f_c) \}$$

- $f_s(s)$ maximum security level of subject s
- $-f_c(s)$ current security level of subject s
- $-f_o(o)$ security level of object o

More Definitions

- Hierarchy functions $H: O \rightarrow P(O)$
- Requirements
 - 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \emptyset$
 - 2. There is no set $\{o_1, \dots, o_k\} \subseteq O$ such that, for i = 1, $\dots, k, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
 - Tree hierarchy; take h(o) to be the set of children of o
 - No two objects have any common children (#1)
 - There are no loops in the tree (#2)

States and Requests

- *V* set of states
 - Each state is (b, m, f, h)
 - b is like m, but excludes rights not allowed by f
- *R* set of requests for access
- *D* set of outcomes
 - <u>y</u> allowed, <u>n</u> not allowed, <u>i</u> illegal, <u>o</u> error
- W set of actions of the system
 - $-W \subseteq R \times D \times V \times V$

History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
 - At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_t \in R$ causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$ - $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all t- (x, y, z) called an *appearance* of $\Sigma(R, D, W, z_0)$

January 28, 2014

ECS 235B Winter Quarter 2014

Example

- $S = \{ s \}, O = \{ o \}, P = \{ \underline{r}, \underline{w} \}$
- $C = \{ \text{High}, \text{Low} \}, K = \{ \text{All} \}$
- For every $f \in F$, either $f_c(s) = (\text{High}, \{\text{All}\})$ or $f_c(s) = (\text{Low}, \{\text{All}\})$
- Initial State:
 - $-b_1 = \{ (s, o, \underline{\mathbf{r}}) \}, m_1 \in M \text{ gives } s \text{ read access over } o, \text{ and} \\ \text{for } f_1 \in F, f_{c,1}(s) = (\text{High}, \{\text{All}\}), f_{o,1}(o) = (\text{Low}, \{\text{All}\}) \end{cases}$
 - Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.

First Transition

- Now suppose in state v_0 : $S = \{ s, s' \}$
- Suppose $f_{c,1}(s') = (Low, \{All\})$
- $m_1 \in M$ gives s and s' read access over o
- As s'not written to $o, b_1 = \{ (s, o, \underline{r}) \}$
- $z_0 = v_0$; if s' requests r_1 to write to o:
 - System decides $d_1 = \underline{y}$
 - New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
 - $b_2 = \{ (s, o, \underline{\mathbf{r}}), (s', o, \underline{\mathbf{w}}) \}$
 - Here, $x = (r_1), y = (\underline{y}), z = (v_0, v_1)$

Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$ $-b_2 = \{ (s, o, \underline{\mathbf{r}}), (s', o, \underline{\mathbf{w}}) \}$ $-f_{c,1}(s) = (\text{High}, \{ \text{All} \}), f_{o,1}(o) = (\text{Low}, \{ \text{All} \})$
- *s* requests r_2 to write to *o*:
 - System decides $d_2 = \underline{n} (as f_{c,1}(s) dom f_{o,1}(o))$
 - New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
 - $-b_2 = \{ (s, o, \underline{\mathbf{r}}), (s', o, \underline{\mathbf{w}}) \}$
 - So, $x = (r_1, r_2), y = (\underline{y}, \underline{n}), z = (v_0, v_1, v_2)$, where $v_2 = v_1$

Basic Security Theorem

- Define action, secure formally

 Using a bit of foreshadowing for "secure"
- Restate properties formally
 - Simple security condition
 - *-property
 - Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

• A request and decision that causes the system to move from one state to another

– Final state may be the same as initial state

- $(r, d, v, v') \in R \times D \times V \times V$ is an *action* of $\Sigma(R, D, W, z_0)$ iff there is an $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_{t-1}, z_t)$
 - Request *r* made when system in state *v*; decision *d* moves system into (possibly the same) state *v*'
 - Correspondence with (x_t, y_t, z_{t-1}, z_t) makes states, requests, part of a sequence

Simple Security Condition

• $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to f (written *ssc rel f*) iff one of the following holds:

1.
$$p = \underline{e} \text{ or } p = \underline{a}$$

- 2. $p = \underline{\mathbf{r}} \text{ or } p = \underline{\mathbf{w}} \text{ and } f_s(s) \operatorname{dom} f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of *b* satisfy *ssc rel f*, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

January 28, 2014

ECS 235B Winter Quarter 2014

Necessary and Sufficient

Σ(R, D, W, z₀) satisfies the simple security condition for any secure state z₀ iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies

- Every $(s, o, p) \in b' - b$ satisfies *ssc rel f*

- Every $(s, o, p) \in b$ that does not satisfy *ssc rel f* is not in b'
- Note: "secure" means z_0 satisfies *ssc rel f*
- First says every (*s*, *o*, *p*) added satisfies *ssc rel f*; second says any (*s*, *o*, *p*) in *b* that does not satisfy *ssc rel f* is deleted

*-Property

- $b(s: p_1, ..., p_n)$ set of all objects that s has $p_1, ..., p_n$ access to
- State (b, m, f, h) satisfies the *-property iff for each s ∈ S the following hold:
 - 1. $b(s: \underline{a}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{a}) [f_o(o) dom f_c(s)]]$
 - 2. $b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]$
 - 3. $b(s: \underline{\mathbf{r}}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{\mathbf{r}}) [f_c(s) dom f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset S' of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
 - See condition placed on \underline{w} right for each

Necessary and Sufficient

- Σ(R, D, W, z₀) satisfies the *-property relative to S'⊆ S for any secure state z₀ iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies the following for every s ∈ S'
 - Every $(s, o, p) \in b' b$ satisfies the *-property relative to S'
 - Every $(s, o, p) \in b$ that does not satisfy the *-property relative to S 'is not in b'
- Note: "secure" means z_0 satisfies *-property relative to S'
- First says every (*s*, *o*, *p*) added satisfies the *-property relative to *S*'; second says any (*s*, *o*, *p*) in *b* that does not satisfy the *-property relative to *S*' is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if *s* can read *o*, then it must have rights to do so in the access control matrix *m*
- This is the discretionary access control part of the model
 - The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- Σ(R, D, W, z₀) satisfies the ds-property for any secure state z₀ iff, for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies:
 - Every $(s, o, p) \in b' b$ satisfies the ds-property
 - Every $(s, o, p) \in b$ that does not satisfy the ds-property is not in b
- Note: "secure" means z_0 satisfies ds-property
- First says every (*s*, *o*, *p*) added satisfies the dsproperty; second says any (*s*, *o*, *p*) in *b* that does not satisfy the *-property is deleted

Secure

- A system is secure iff it satisfies:
 - Simple security condition
 - *-property
 - Discretionary security property
- A state meeting these three properties is also said to be secure

Basic Security Theorem

- Σ(R, D, W, z₀) is a secure system if z₀ is a secure state and W satisfies the conditions for the preceding three theorems
 - The theorems are on the slides titled "Necessary and Sufficient"

Rule

- $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ *ssc-preserving* if for all $(r, v) \in R \times V$ and v satisfying *ssc rel f*, $\rho(r, v) = (d, v')$ means that v' satisfies *ssc rel f'*.
 - Similar definitions for *-property, ds-property
 - If rule meets all 3 conditions, it is *security-preserving*

Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state

– if two rules act on a read request in state $v \dots$

- Solution: define relation W(ω) for a set of rules ω
 = { ρ₁,..., ρ_m } such that a state (r, d, v, v') ∈W(ω) iff either
 - $-d = \underline{\mathbf{i}};$ or
 - for exactly one integer j, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies

Rules Preserving SSC

- Let ω be set of *ssc*-preserving rules. Let state z₀ satisfy simple security condition. Then Σ(R, D, W(ω), z₀) satisfies simple security condition
 - Proof: by contradiction.
 - Choose (x, y, z) ∈ Σ(R, D, W(ω), z₀) as state not satisfying simple security condition; then choose t ∈ N such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
 - As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq \underline{i}$.
 - As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.

Adding States Preserving SSC

- Let v = (b, m, f, h) satisfy simple security condition. Let (s, o, p) ∉ b, b' = b ∪ { (s, o, p) }, and v' = (b', m, f, h). Then v' satisfies simple security condition iff:
 - 1. Either $p = \underline{e}$ or $p = \underline{a}$; or
 - 2. Either $p = \underline{\mathbf{r}}$ or $p = \underline{\mathbf{w}}$, and $f_c(s) \operatorname{dom} f_o(o)$
 - Proof
 - 1. Immediate from definition of simple security condition and v' satisfying *ssc rel f*
 - 2. *v*' satisfies simple security condition means $f_s(s) \operatorname{dom} f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies *ssc rel f*, so *v*' satisfies simple security condition

Rules, States Preserving *-Property

• Let ω be set of *-property-preserving rules, state z_0 satisfies *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property

Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property

Combining

- Let ρ be a rule and $\rho(r, v) = (d, v')$, where v = (b, m, f, h)and v' = (b', m', f', h'). Then:
 - 1. If $b' \subseteq b, f' = f$, and v satisfies the simple security condition, then v'satisfies the simple security condition
 - 2. If $b' \subseteq b, f' = f$, and v satisfies the *-property, then v'satisfies the *-property
 - 3. If $b' \subseteq b, m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property

- 1. Suppose *v* satisfies simple security property.
 - a) $b' \subseteq b$ and $(s, o, \underline{\mathbf{r}}) \in b'$ implies $(s, o, \underline{\mathbf{r}}) \in b$
 - b) $b' \subseteq b$ and $(s, o, \underline{w}) \in b'$ implies $(s, o, \underline{w}) \in b$
 - c) So $f_c(s)$ dom $f_o(o)$
 - d) But f'=f
 - e) Hence $f'_c(s) dom f'_o(o)$
 - f) So v' satisfies simple security condition

2, 3 proved similarly

Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
 - determines if components of request are valid

get-read Rule

- Request $r = (get, s, o, \underline{r})$
 - *s* gets (requests) the right to read *o*
- Rule is ρ₁(r, v):
 if (r ≠ Δ(ρ₁)) then ρ₁(r, v) = (i, v);
 else if (f_s(s) dom f_o(o) and [s ∈ S_T or f_c(s) dom f_o(o)]
 and r ∈ m[s, o])

then $\rho_1(r, v) = (y, (b \cup \{ (s, o, \underline{r}) \}, m, f, h));$ else $\rho_1(r, v) = (\underline{n}, v);$

January 28, 2014

ECS 235B Winter Quarter 2014

Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
 - Proof
 - Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If v' = v, result is trivial. So let $v' = (b \cup \{ (s_2, o, \underline{r}) \}, m, f, h)$.

- Consider the simple security condition.
 - From the choice of v', either $b' b = \emptyset$ or $\{(s_2, o, \underline{\mathbf{r}})\}$
 - If $b'-b = \emptyset$, then { (s_2, o, \underline{r}) } $\in b$, so v = v', proving that v' satisfies the simple security condition.
 - If $b'-b = \{ (s_2, o, \underline{r}) \}$, because the *get-read* rule requires that $f_s(s) \operatorname{dom} f_o(o)$, an earlier result says that v'satisfies the simple security condition.

- Consider the *-property.
 - Either $s_2 \in S_T$ or $f_c(s) dom f_o(o)$ from the definition of *get-read*
 - If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
 - If $f_c(s) \operatorname{dom} f_o(o)$, an earlier result says that v' satisfies the simple security condition.

- Consider the discretionary security property.
 - Conditions in the *get-read* rule require $\underline{\mathbf{r}} \in m[s, o]$ and either $b' - b = \emptyset$ or $\{(s_2, o, \underline{\mathbf{r}})\}$
 - If $b'-b = \emptyset$, then { (s_2, o, \underline{r}) } $\in b$, so v = v', proving that v' satisfies the simple security condition.
 - If $b'-b = \{ (s_2, o, \underline{r}) \}$, then $\{ (s_2, o, \underline{r}) \} \notin b$, an earlier result says that v' satisfies the ds-property.