January 28, 2014

- Bell-LaPadula
	- Informally
	- Formally
	- Example Instantiation

Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
	- Deals with information flow
	- Integrity incidental
- Multi-level security models are best-known examples
	- Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
	- Top Secret: highest
	- Secret
	- Confidential
	- Unclassified: lowest
- Levels consist of *security clearance L*(*s*) – Objects have *security classification L*(*o*)

Example

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

January 28, 2014 *ECS 235B Winter Quarter 2014*

Reading Information

- Information flows *up*, not *down*
	- "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 1)
	- $-$ Subject *s* can read object *o* iff, $L(o) \le L(s)$ and *s* has permission to read *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
	- Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
	- "Writes up" allowed, "writes down" disallowed
- ***-Property (Step 1)
	- $-$ Subject *s* can write object *o* iff $L(s) \le L(o)$ and *s* has permission to write *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
	- Sometimes called "no writes down" rule

Basic Security Theorem, Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the * property, step 1, then every state of the system is secure
	- Proof: induct on the number of transitions

Bell-LaPadula Model, Step 2

- Expand notion of security level to include categories
- Security level is (*clearance*, *category set*)
- Examples
	- $-$ (Top Secret, { NUC, EUR, ASI })
	- $-$ (Confidential, $\{$ EUR, ASI $\}$)
	- $-$ (Secret, $\{ NUC, ASI \}$)

Levels and Lattices

- (A, C) *dom* (A', C') iff $A' \le A$ and $C' \subseteq C$
- Examples
	- (Top Secret, {NUC, ASI}) *dom* (Secret, {NUC})
	- (Secret, {NUC, EUR}) *dom* (Confidential,{NUC, EUR})
	- (Top Secret, {NUC}) ¬*dom* (Confidential, {EUR})
- Let *C* be set of classifications, *K* set of categories. Set of security levels $L = C \times K$, *dom* form lattice $-\text{lub}(L) = (\text{max}(A), C)$ $-$ glb(L) = (min(A), \varnothing)

Levels and Ordering

- Security levels partially ordered
	- Any pair of security levels may (or may not) be related by *dom*
- "dominates" serves the role of "greater" than" in step 1
	- "greater than" is a total ordering, though

Reading Information

- Information flows *up*, not *down*
	- "Reads up" disallowed, "reads down" allowed
- Simple Security Condition (Step 2)
	- Subject *s* can read object *o* iff *L*(*s*) *dom L*(*o*) and *s* has permission to read *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
	- Sometimes called "no reads up" rule

Writing Information

- Information flows up, not down
	- "Writes up" allowed, "writes down" disallowed
- ***-Property (Step 2)
	- Subject *s* can write object *o* iff *L*(*o*) *dom L*(*s*) and *s* has permission to write *o*
		- Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
	- Sometimes called "no writes down" rule

Basic Security Theorem, Step 2

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 2, and the *-property, step 2, then every state of the system is secure
	- Proof: induct on the number of transitions
	- In actual Basic Security Theorem, discretionary access control treated as third property, and simple security property and *-property phrased to eliminate discretionary part of the definitions — but simpler to express the way done here.

Problem

- Colonel has (Secret, {NUC, EUR}) clearance
- Major has (Secret, {EUR}) clearance
	- Major can talk to colonel ("write up" or "read down")
	- Colonel cannot talk to major ("read up" or "write down")
- Clearly absurd!

Solution

- Define maximum, current levels for subjects – *maxlevel*(*s*) *dom curlevel*(*s*)
- Example
	- Treat Major as an object (Colonel is writing to him/her)
	- Colonel has *maxlevel* (Secret, { NUC, EUR })
	- Colonel sets *curlevel* to (Secret, { EUR })
	- Now *L*(Major) *dom curlevel*(Colonel)
		- Colonel can write to Major without violating "no writes down"
	- Does *L*(*s*) mean *curlevel*(*s*) or *maxlevel*(*s*)?
		- Formally, we need a more precise notation

Formal Model

- Allows us to reason precisely about the model
- Provides a formalism to validate systems against

Formal Model Definitions

- *S* subjects, *O* objects, *P* rights – Defined rights: r read, a write, w read/write, e empty
- *M* set of possible access control matrices
- *C* set of clearances/classifications, *K* set of categories, $L = C \times K$ set of security levels

•
$$
F = \{ (f_s, f_o, f_c) \}
$$

- $-f_s(s)$ maximum security level of subject *s*
- $-f_c(s)$ current security level of subject *s*
- $-f_o(o)$ security level of object *o*

More Definitions

- Hierarchy functions *H*: *O*→*P*(*O*)
- **Requirements**
	- 1. $o_i \neq o_j \Rightarrow h(o_i) \cap h(o_j) = \varnothing$
	- 2. There is no set $\{o_1, ..., o_k\} \subseteq O$ such that, for $i = 1$, ..., k , $o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- Example
	- Tree hierarchy; take *h*(*o*) to be the set of children of *o*
	- No two objects have any common children $(\#1)$
	- There are no loops in the tree $(\#2)$

States and Requests

- *V* set of states
	- $-$ Each state is (b, m, f, h)
		- *b* is like *m*, but excludes rights not allowed by *f*
- *R* set of requests for access
- *D* set of outcomes
	- y allowed, <u>n</u> not allowed, i illegal, <u>o</u> error
- *W* set of actions of the system
	- $-V \subseteq R \times D \times V \times V$

History

- $X = R^N$ set of sequences of requests
- $Y = D^N$ set of sequences of decisions
- $Z = V^N$ set of sequences of states
- Interpretation
	- At time *t* ∈ *N*, system is in state z_{t-1} ∈ *V*; request x_t ∈ *R* causes system to make decision $y_t \in D$, transitioning the system into a (possibly new) state $z_t \in V$
- System representation: $\Sigma(R, D, W, z_0) \in X \times Y \times Z$ $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_{t-1}, z_t) \in W$ for all *t*
	- (x, y, z) called an *appearance* of $\Sigma(R, D, W, z_0)$

January 28, 2014 *ECS 235B Winter Quarter 2014*

Example

- $S = \{ S \}, Q = \{ o \}, P = \{ r, w \}$
- $C = \{ High, Low \}, K = \{ All \}$
- For every $f \in F$, either $f_c(s) = (High, \{All\})$ or $f_c(s) = ($ Low, $\{$ All $\})$
- Initial State:
	- $-b_1 = \{ (s, o, \underline{r}) \}, m_1 \in M$ gives *s* read access over *o*, and $for f_1 \in F, f_{c,1}(s) = (High, {All}), f_{o,1}(o) = (Low, {All})$
	- $-$ Call this state $v_0 = (b_1, m_1, f_1, h_1) \in V$.

First Transition

- Now suppose in state v_0 : $S = \{ s, s' \}$
- Suppose $f_{c,1}(s) = (Low, \{All\})$
- $m_1 \in M$ gives *s* and *s'* read access over *o*
- As *s'* not written to $o, b_1 = \{ (s, o, \underline{r}) \}$
- $z_0 = v_0$; if *s'* requests r_1 to write to *o*:
	- $-$ System decides $d_1 = y$
	- $-$ New state $v_1 = (b_2, m_1, f_1, h_1) \in V$
	- $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$
	- $-$ Here, $x = (r_1)$, $y = (y)$, $z = (v_0, v_1)$

Second Transition

- Current state $v_1 = (b_2, m_1, f_1, h_1) \in V$ $- b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$ $f_{c,1}(s) = (High, \{All \})$, $f_{o,1}(o) = (Low, \{ All \})$
- *s* requests r_2 to write to ω :
	- $-$ System decides $d_2 = \underline{n}$ (as $f_{c,1}(s)$ *dom* $f_{o,1}(o)$)
	- $-$ New state $v_2 = (b_2, m_1, f_1, h_1) \in V$
	- $b_2 = \{ (s, o, \underline{r}), (s', o, \underline{w}) \}$ $-$ So, $x = (r_1, r_2), y = (\underline{y}, \underline{n}), z = (v_0, v_1, v_2),$ where $v_2 = v_1$

Basic Security Theorem

- Define action, secure formally – Using a bit of foreshadowing for "secure"
- Restate properties formally
	- Simple security condition
	- *-property
	- Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

• A request and decision that causes the system to move from one state to another

– Final state may be the same as initial state

- $(r, d, v, v') \in R \times D \times V \times V$ is an *action* of $\Sigma(R, D, v')$ *W*, *z*₀) iff there is an $(x, y, z) \in \Sigma(R, D, W, z_0)$ and a $t \in N$ such that $(r, d, v, v') = (x_t, y_t, z_{t-1}, z_t)$
	- Request *r* made when system in state *v*; decision *d* moves system into (possibly the same) state *v*^ʹ
	- $-$ Correspondence with (x_t, y_t, z_{t-1}, z_t) makes states, requests, part of a sequence

Simple Security Condition

• $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to *f* (written *ssc rel f*) iff one of the following holds:

1.
$$
p = \underline{e}
$$
 or $p = \underline{a}$

- 2. $p = r$ or $p = w$ and $f_s(s)$ *dom* $f_o(o)$
- Holds vacuously if rights do not involve reading
- If all elements of *b* satisfy *ssc rel f*, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

January 28, 2014 *ECS 235B Winter Quarter 2014*

Necessary and Sufficient

• $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any secure state z_0 iff for every action (*r*, *d*, (*b*, *m*, *f*, *h*), (*b*^ʹ , *m*^ʹ , *f*^ʹ , *h*ʹ)), *W* satisfies

 $-$ Every $(s, o, p) \in b'$ – *b* satisfies *ssc rel f*

- Every (s, o, p) ∈ *b* that does not satisfy *ssc rel f* is not in b'
- Note: "secure" means z_0 satisfies *ssc relf*
- First says every (*s*, *o*, *p*) added satisfies *ssc rel f*; second says any (*s*, *o*, *p*) in *b* that does not satisfy *ssc rel f* is deleted

*-Property

- $b(s: p_1, \ldots, p_n)$ set of all objects that *s* has p_1, \ldots, p_n access to
- State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:
	- 1. $b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) [f_o(o) \text{ dom } f_c(s)]]$
	- 2. $b(s: \underline{w}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]$
	- 3. $b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) [f_c(s) \text{ dom } f_o(o)]]$
- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If all states satisfy simple security condition, system satisfies simple security condition
- If a subset *S'* of subjects satisfy *-property, then *-property satisfied relative to $S' \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
	- See condition placed on w right for each

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b',$ $m\prime$, $f\prime$, $h\prime$), *W* satisfies the following for every $s \in S'$
	- Every $(s, o, p) \in b' b$ satisfies the ^{*}-property relative to *S*[′]
	- Every (*s*, *o*, *p*) ∈ *b* that does not satisfy the *-property relative to *S* \prime is not in \mathbf{b} ^{\prime}
- Note: "secure" means z_0 satisfies *-property relative to S'
- First says every (s, o, p) added satisfies the *-property relative to S'; second says any (s, o, p) in *b* that does not satisfy the *-property relative to *S*ʹ is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if *s* can read *o*, then it must have rights to do so in the access control matrix *m*
- This is the discretionary access control part of the model
	- The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- $\Sigma(R, D, W, z_0)$ satisfies the ds-property for any secure state z_0 iff, for every action $(r, d, (b, m, f,$ *h*), (b', m', f', h') , *W* satisfies:
	- Every $(s, o, p) \in b' b$ satisfies the ds-property
	- Every (s, o, p) ∈ *b* that does not satisfy the ds-property is not in *b*
- Note: "secure" means z_0 satisfies ds-property
- First says every (*s*, *o*, *p*) added satisfies the dsproperty; second says any (s, o, p) in *b* that does not satisfy the *-property is deleted

Secure

- A system is secure iff it satisfies:
	- Simple security condition
	- *-property
	- Discretionary security property
- A state meeting these three properties is also said to be secure

Basic Security Theorem

- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and *W* satisfies the conditions for the preceding three theorems
	- The theorems are on the slides titled "Necessary and Sufficient"

Rule

- \bullet $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ *ssc-preserving* if for all $(r, v) \in R \times V$ and *v* satisfying *ssc rel f*, $\rho(r, v) = (d, v')$ means that *v'* satisfies *ssc rel f*ʹ.
	- Similar definitions for *-property, ds-property
	- If rule meets all 3 conditions, it is *security-preserving*

Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state

– if two rules act on a read request in state *v …*

- Solution: define relation $W(\omega)$ for a set of rules ω $= \{ \rho_1, \ldots, \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
	- $-d = i$; or
	- $-$ for exactly one integer *j*, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies

Rules Preserving *SSC*

- Let ω be set of *ssc*-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, D)$ $W(\omega)$, z_0) satisfies simple security condition
	- Proof: by contradiction.
		- Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
		- As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq \underline{i}$.
		- As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.

Adding States Preserving *SSC*

- Let $v = (b, m, f, h)$ satisfy simple security condition. Let $(s, o, p) \notin b, b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then *v*' satisfies simple security condition iff:
	- 1. Either $p = e$ or $p = a$; or
	- 2. Either $p = r$ or $p = w$, and $f_c(s)$ *dom* $f_o(o)$
	- Proof
		- 1. Immediate from definition of simple security condition and *v*^ʹ satisfying *ssc rel f*
		- 2. *v*' satisfies simple security condition means $f_s(s)$ *dom* $f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies *ssc relf*, so *v*' satisfies simple security condition

Rules, States Preserving *- Property

Let ω be set of *-property-preserving rules, state *z*₀ satisfies *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property

Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state *z*₀ satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property

Combining

- Let ρ be a rule and $\rho(r, v) = (d, v')$, where $v = (b, m, f, h)$ and $v' = (b', m')$ $\langle f, h \rangle$. Then:
	- 1. If $b' \subseteq b, f' = f$, and *v* satisfies the simple security condition, then v' satisfies the simple security condition
	- 2. If $b' \subseteq b, f' = f$, and *v* satisfies the *-property, then *v*' satisfies the *-property
	- 3. If $b' \subseteq b$, $m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property

- 1. Suppose *v* satisfies simple security property.
	- a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
	- b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
	- c) So $f_c(s)$ *dom* $f_o(o)$
	- d) But $f' = f$
	- e) Hence $f'_c(s)$ *dom* $f'_o(o)$
	- f) So *v*['] satisfies simple security condition

2, 3 proved similarly

Example Instantiation: Multics

- 11 rules affect rights:
	- set to request, release access
	- set to give, remove access to different subject
	- set to create, reclassify objects
	- set to remove objects
	- set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
	- *-property not enforced; subjects trusted not to violate
- $\Delta(\rho)$ domain
	- determines if components of request are valid

get-read Rule

• Request $r = (get, s, o, r)$

– *s* gets (requests) the right to read *o*

• Rule is $\rho_1(r, v)$: **if** $(r \neq \Delta(\rho_1))$ **then** $\rho_1(r, v) = (i, v);$ **else if** ($f_s(s)$ *dom* $f_o(o)$ **and** [$s \in S_T$ **or** $f_c(s)$ *dom* $f_o(o)$] and $r \in m[s, o]$

then $\rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h));$ **else** $\rho_1(r, v) = (n, v);$

January 28, 2014 *ECS 235B Winter Quarter 2014* Slide #44

Security of Rule

- The get-read rule preserves the simple security condition, the *-property, and the ds-property
	- Proof
		- Let *v* satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b \cup \{ (s_2, o, \underline{r}) \},$ *m*, *f*, *h*).

- Consider the simple security condition.
	- $-$ From the choice of *v'*, either $b' b = \emptyset$ or { (*s*₂, *o*, <u>r</u>) }
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, because the *get-read* rule requires that $f_s(s)$ *dom* $f_o(o)$, an earlier result says that *v* satisfies the simple security condition.

- Consider the *-property.
	- Either $s_2 \in S_T$ or $f_c(s)$ *dom* $f_o(o)$ from the definition of *get-read*
	- If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
	- $-$ If $f_c(s)$ *dom* $f_o(o)$, an earlier result says that *v*' satisfies the simple security condition.

- Consider the discretionary security property.
	- Conditions in the *get-read* rule require $\underline{r} \in m[s, o]$ and either $b' - b = \emptyset$ or $\{ (s_2, o, r) \}$
	- $-$ If $b' b = \emptyset$, then $\{ (s_2, o, r) \} \in b$, so $v = v'$, proving that *v*´ satisfies the simple security condition.
	- $-$ If $b' b = \{ (s_2, o, r) \}$, then $\{ (s_2, o, r) \} \notin b$, an earlier result says that *v*' satisfies the ds-property.